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SUMMARY

The problem of the active control of linear elastic structures __

using piezoceramic transducers as sensors and actuators has been

investigated by a combined theoretical and experimental approach. The•S

optimal rate feedback gain distribution of an active structure with

multiple collocated sensors and actuators has been obtained by using a

limited state feedback approach which resulted in an increase in

system damping. To model the active structure for the optimal control

problem, a finite element model has been developed. An active element

consisting of a simple beam element with a bonded unimorphic

piezoceramic sensors and actuators has been obtained. The model

incorporates the electromechanical coupling of the transducers,

bonding effects and a mathematical model for the feedback signal es

conditioning circuitry. The resulting discrete degrees of freedom

model is in the form of a set of coupled ordinary differential

equations which describe the dynamic behavior of the active structure.

To obtain the unknown dynamic coupling coefficients that represent the

effects of bonding and other parameters of the model accurately,

parameter identification methods have been used. ,Modal control has

also been experimentally demonstrated by conditioning the output of

each individual sensor with an adjustable bandpass filter, phase / q

shifting and gain circuits. The identification of biorthogonal modes

of the resulting non self adjoint system when non collocated sensors -

and actuators has also been accomplished. The identified discrete
• 1%

• %d-
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degrees of freedom model and a quadratic performance index have been

used in obtaining optimal control laws. In this phase, the problem

has been treated as a regulator with limited state feedback. As a

next step, the optimal control problem has been solved by considering

the active structure as a distributed parameter system. An optimal

control law has been obtained by maximizing the decrease of the time

derivative of a Lyapunov functional of a cantilever beam with a

collocated sensor and actuator occupying a subdomain of the structure

with rate feedback control. The developed control law has been

validated by using an explicit finite difference method. The

governing partial differential equations have been solved for the

system subject to excitations and control.

#.' . .
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CHAPTER I .

INTRODUCTION AND BACKGROUND

In the past few years, there has been considerable research

activity in the field of active and passive control of vibrations of

flexible structures. One of the methods of active control of

vibrations involves the placement of piezoelectric devices on a .A

structure to sense and control dynamic strains induced by structural

vibrations. The deformation of the sensing transducer results in an

electric current which is conditioned by operations such as

amplification and shifting of the phase of the signal. The conditioned

signal is then applied to another piezoelectric, electrostrictive or

magnetostrictive device placed at a selected location of the

structure. This transducer acts as an actuator motor or a driver and

transmits mechanical energy to the structure. Depending on the

applied voltage, electromechanical coupling of the forcing transducer .

to the structure and its location, a certain amount of structural

control of flexible structures can be achieved. The term "electronic .,5

damping " has been used to describe this method of structural control

in some of the more recent literature.
1-5

This type of active control offers unique features that are not

usually employed for control of structural vibrations. For example,

since the dynamics of direct contact type sensors and actuators permit

a.'.

d4,4,..::
).,4,
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a wide frequency range of control, a measure of tunability is provided -

for the control of structural systems that age or grow. This method

also has the potential benefit of adding less mass to the system than ,!.

comparable passive and active servo controller systems. <1

Passive systems lack narrow band tunability and active servo

controllers require an inertial ground to react against. It is

expected though that each particular type of vibration control

device will be beneficial in different areas of operation in terms of

the amplitude, control force requirements and frequency bandwidth.

The potential of using piezoceramic transducers for vibration

control has been convincingly demonstrated in a variety of

experiments such as jitter control of optical systems.2'5 ,- I

Nevertheless, there are many issues which still need to be resolved

before appropriate control design procedures are developed.

Specifically, given a piezoelectric material, electro-mechanical

coupling, the structure and the control domain, a designer should be

able to obtain an optimum procedure for controlling the vibration of

the given system. To meet this design goal, one must be able to obtain

a measure of the system changes in damping and stiffness due to the

active feedback control similar to the way the mass and stiffness

properties are obtained by using other analytical techniques.

To resolve some of these issues, the research in this thesis is _____

directed towards the following major objectives;

(1) The first objective is to develop models for the active structure

consisting of a beam structure, piezoceramic sensors, signal

%'

. . .
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conditioning systems with appropriate control laws and

piezoceramic actuators. The term "active beam" or "active

structure" has been used to refer to such a structure.

(2) The second objective is to identify the dynamic characteristics

of the active structure from measurements of force and

acceleration of the active structure. Cases of collocated and

non collocated sensors and actuators will be considered.

(3) The third objective is to identify the system parameters from

measurements of the input and output of the active structure. In

particular, electromechanical dynamic coupling coefficients and

structural damping, that cannot be determined otherwise, are

identified.

(4) The final objective is to develop optimal control algorithms to

selected cases involving an active beam with piezoceramic sensors

and actuators.

In the next section, a brief review of the field of

piezoelectricity is described.

1.1. Background

Piezoelectricity was first discovered by the Curie brothers. 6

This work led them to look at the electrification of crystals upon the

application of pressure. The converse piezoelectric effect, which is

the change in crystal dimensions upon the application of an electric

field was first theoretically predicted by Lippman and in the same

year verified by the Curies. 6  Later investigators established the

relationship between piezoelectricity and the crystalline structure of i".

various materials. -. >' '

7N44. ~ ~ .~ *j'*~'**~ . j~~ 4* J. . ~ .b.~. %~. . .. % % *.,.. z..~/,......'.., .,.-',%
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The first practical application of the piezoelectric effect was

for the development of acoustic waves in fluids. Quartz crystalline %1e.%

material was initially used until the development of the ferroelectric

class of materials.6  The term ferroelectric is- used to describe a

material which does not have a center of symmetry or electric dipole

moment above a certain temperature called the Curie temperature.7

The single most important factor of the ferroelectric's over

other piezoelectric materials is that they have a higher

electromechanical coupling. Electromechanical coupling is defined as

the amount of deformation achieved per field strength applied to the

piezoelectric material.

Ferroelectric materials contain both organic and inorganic

compounds. The piezoceramic ferroelectric materials are used in this

investigation for structural control applications.

The constitutive relationships for piezoceramic material have

been discussed by a number of investigators over the years and

A
compiled by the IEEE and the Electronic Industries and American

Standards Association into standards.8 '9  One of the most serious . .

disadvantages of piezoceramic ferroelectric type materials with

reference to this application is the sensitivity of their

piezoelectric properties to changes in temperature. . Berlincourt10

has discussed the relationship of the performance of selected

piezoceramics with temperature and other environmental factors.

Doping of piezoceramics with lead and other elements helps to

stabilize these parameters over a wider temperature range. The lead

".'4 """2"" -2"" 2 . - ,""""""""""""".."'"- . .""' " " -" "•""" ". ,'. , ' " -- " - . .,-,. ,. --. "i -
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zirconate titanate (PZT) type piezoceramics have proven to be the most

promising compounds for stable piezoelectric properties and mechanical

behavior over a temperature range that includes -200 to 150 degrees C.

Organic type piezoelectric compounds such as polyvinylidene

fluoride film (PVDF)1' have been used for active control of

structures. This type of organic ferroelectric material has the

potential of providing strains of an order of magnitude greater than
4.-.

piezoceramics but at the cost of a much greater applied electric

field. Some of the more recent applications of PVDF has been in the

area of adaptive optics 12 ,13  and in vibration control of

structures.14'15

The electrostrictive or magnetostrictive effects in some ,.

materials can perform the same function as the converse piezoelectric

effect. Electrostriction is related to a material change of shape upon ,.

the application of a large electric field. Usually the change in shape

is very small and until recently was considered as a second order

1 teeffect. W.P. Mason 16 has studied the electrostrictive effect in

nonpolarized ferroelectric type ceramic of materials. According to. -

Mason the electrostrictive effect is quite large when compared to the

corresponding converse piezoelectric effect of the same polarized )O-,

material. One of the advantages of electrostrictive actuators is that

they do not exhibit hysteresis effect common to piezoceramic type

materials.17 This feature may make electrostrictive ceramics to be

more suitable as driving devices for vib-ation control. I"



6

Some of the applications of piezoceramics can be classified as

quasistatic applications, dynamic applications with resonanting

7
piezoceramics and non resonanting dynamic applications. Most of the

work involving quasistatic applications is in the area of adaptive

optics. 18-25,71 Dynamic applications with resonanting piezoceramics

have been primarily used in creating acoustic surface and bulk "'
26-31 ""

waves. Non resonating dynamic application are mostly in the area

of transducers and only recently, non resonating dynamic applications

have been in the area of active control of flexible structures. '

1-5,15,32,33 " "

Electronic Damping • -.

One of the earliest known uses of piezoceramics to active control .-

1' "" 
.
V

of structures is attributed to Olsen. 1  In this work he proposed an

electronic vibration reducer consisting of a piezoelectric driver and

sensor attached to a structure with a suitable feedback amplifier. " .

Another early example of this type of control is by Mckechnie 32

who has used piezoceramic sensors in a specially built accelerometer

to drive a forcing piezoceramic to reduce the resonant response of an

accelerometer. His experimental results indicate a reduction in the

predicted peak response by thirty percent.

The first application to the active control of a structure is due

to Forward 2 who has investigated the vibration control of a mirror

subjected to acoustical excitation of its resonances. One

piezoelectric transducer has been used to sense the vibrations and its

output has been conditioned by a negative feedback amplifier to drive

*J-. .
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another spatially separated transducer. The vibration response of a

single mode of the optical structure was reduced significantly.

Forward and Lui3 have also demonstrated additional applications

of "electronic damping" to control resonances in gimbal torquer

control loops where they reduced the peak response of a gimbal torquer

loop at various modal frequencies corresponding to gimbal mechanical

resonances. This was accomplished by using small piezoelectric strain

transducers to provide signals into a summing junction in the torquer - -

control loops. Forward and Swigert have applied an "electronic

damping" system to reduce orthogonal bending modes in a cylindrical

satellite antenna mast. The application of piezoceramic sensors and

actuators to reduce the amplitude of response of two problem modes in

a large composite optical bench has been reported in reference.5  One "

piezoelectric ceramic strain transducer has been used as a sensor, and
•J'. ,

ten others were wired in parallel as a combined driver in a velocity
33"'"

feedback loop. In a recent work, Crawley, has presented a

mechanics coupling type of model for a piezoceramic bonded to a small

cantilever beam. The model predicts the first mode dynamic response

of a beam when driven by the piezoceramic transducers.

An examination of the reported literature in the field of active

control of structures with piezoceramic sensors and actuators has

revealed the following. A consistent analytical model does not exist

for an active structure with piezoceramic or piezoelectric sensors and

actuators that occupy selected subdomain of the structure. The

problem of identification of the dynamic characteristics of an active
-°4

4 %°

.o•4.
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structure from measurements of time histories of appropriate input and

output has not been explored. In particular, a significant problem of

practical importance is the identification of dynamic characteristics

of an active structure with non collocated sensors and actuators.

Procedures for the identification of system parameters such as

electromechanical coupling does not exist. The problem of optimal

control of structures with piezoceramic sensors and actuators has not

70been examined. Only the problem of "instantly optimal" control of a

structure with a single PVDF actuator and a conventional accelerometer

sensor has been explored. 
15

Some of these unsolved problems discussed in the previous

paragraph, have been examined in the subsequent chapters. In chapter

I, the development of a finite IV a method is developed for model

identification for a structure with non collocated sensors and

actuators. The optimal gain distribution of multiple location control

of a simple structure using rate feedback is explored by applying

limited state output feedback control in chapter V. Finally, the time
optimal control of a cantilever beam using a distributed piezoceramic

sensor and actuator is presented in chapter VI.

, .. 'o

€I
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CHAPTER I I .,- U- ,

FINITE ELEMENT MODEL OF THE ACTIVE STRUCTURE

In this chapter a finite element model has been developed for an .-.

active structure shown in figure 2.1 consisting of a linear isotropic -,

elastic beam, piezoceramic sensor occupying a subdomain of the beam,

with the signal conditioning and piezoceramic actuator occupying another

, .... ,

subdomain of the beam. In the following sections, the sensor, actuator A(

and control electronic are analyzed and the finite element model for the ..

' ".. -.

active structure has been developed. Previous studies have considered.,-

3536.

only a finite element model or a beam with a piezoelectric actuator3 aneasmtic beopie or am snsrucupyin Th assubonsai in of them

.-A.

2.1. Snsin 9 Transucer-'.

wTh he seignl conditioningonditng piezoceramic toraoccupying.anothe

transducer consists of a thin layer of G-1195 PZT ceramic coated with a ].z.];

thin nickel electrode film. In this form the piezoceramic transducer is

called a unimorph. When two unimorphs are bonded together and share the "7"-]. i.

common electrode between them they are called bimorphs The .

polarization of the unimorph or bimorph depend on the intended

appl icati on.

A idealized sketch of a section ofwith a ezoe sensing transducertor-

and signal conditioning circuit is shown in Figure 2.2 The

piezo cer const eo is polarized i n the +z di rection and

aplication.

P "' ".

A idelizedsketh of secion o a bem wih a snsin.tranduce
and sgnal condiionig cicuit s shwn i Figue-2.. Th

piezoeramc trasducr is olarzed i the +z diectin an

~ ..~ .%.X *~~L'4- .~ '-~-. v-.-. ...,:~
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electrically connected via two short leads a current amplifier. The

following assumptions are made:

a) Initially, a perfect bond is assumed between the elastic body

and the transducer. In reality there is a relative displacement due to
4_.-.

the deformation of the bonding material. This has been initially .

neglected. Later, this effect is included approximately in the form of

a dynamic coupling coefficient.

b) The thin film electrode surfaces add no mass or stiffness to the

transducer and the transducer itself does not add any mass or stiffness

to the structure to which it is bonded.

c) The capacitance of the transducer leads is considered to be ,9

negligible.

Considering a one dimensional analysis of the sensor, the following

constitutive relations derived in Appendix A are approximated for

xi xxi+1• *

Sll(xt) =E T11(X,t) + d31E3(x,t) (2.1)

D3 (xt) = d31T11 (x,t) + C13E3 (xt) (2.2)

where

S = strain

Tl = stress

E3 = electric field between the electrodes

D = charge per unit area

-I44. ,'. ll
4%%

AA

S - *p~ .- ,J ~ .A A Q .. 4 ~-.7 %
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EN
ss E elastic compliance at constant electric field

d31  piezoelectric constant

T = dielectric constant at constant stress -"£13

Notations used in eqs. (2.1) and (2.2) are based on the standards

8, 9
developed for piezoelectricity

The sensor thickness is an order of magnitude smaller then the

elastic body and the strain distribution is assumed to be constant

through the sensor cross section and equal to the upper fiber strain (@

z=h) of the elastic beam. Therefore the strain distribution along the

sensor is approximated as

S11(x,t) h a2w(xt) (2.3)
ax2  

" "ax

When the sensor is deformed, both a charge and an electric field is

produced. The electric field between the two electric plates results in

an electric potential at any cross section equal to

Vs(Xi't) = E(xi,t) dz (2.4)

or
SVs(x i' t) = 6 E(xi t) (25)

where 6 is the thickness of the sensor. Since there is no input

resistance to node 1 in Figure 2.2 the following conditions arise69  ';"

V(Mt) v _(t) (2.4)

"..

orlt-~

's i" I'°" % =' ', i,% '"#' . 1% ',' ,, " I p " "rtpi~ " al V5 (x1 , im .,....t 6 . . . .i A i,.(. Ex.,.t) . 5).. . .. " . "'-
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Iv+(t) - v_(t) = (2.7)

for a typical commercial operational amplifier ev is of the order of 
3

volt. Therefore the potential difference between the sensor electrodes

is

Vs(t) 1.0 x lO 3 volt. (2.8)
S~

For the transducers used, 6 is approximately 2.54x10 - M therefore the

field between the plates is of the order of

E3 (t) z 4.0 V/M , (2.9)

Multiplying the field by d3 1  and cT in eqs. (2.3) and (2.4) a31 13

strain of 7.16 x 10"10 M/M and electric displacement of 6.6 x 10-8 C/M*M

are obtained. These terms are negligible compared to the strain and

charge produced due to the stress in the piezoceramic. Furthermore
'-..- .,,

because of the negligible electric field, the sensor ideally becomes a

pure current source. With this particular configuration using eq. .,'-

(2.3) and solving for the stress in eq. (2.1) yields

T1 1 (x,t) S E 2  (2.10)
11 ax

and the electric displacement in eq.(2.2) as .*."

D3(x,t) _ d31T11 (x,t) (2.11)

V:./

, %

°ii,'

m.4o
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Hence the charge developed related to the sensor strain at every

point given a constant width transducer is

cE a2w(xt) (2.12)D3 (x,t) - hd3 1  11 ax2

where c 1/s is now the elastic modulus of the piezoceramic material .5 .5

measured at constant field conditions. The input sensor current i s(t) is

dependent on the rate of charge developed

di s(t) = 63 (t)dxdy. (2.13)

For a constant width plate the current is

L

i s(t) = Wd 3 dx (2 .14 )

0

A "

where wd is the width and L is the plate length.

The charge D in general, is a function of x and time. Eqs. (2.12)

and (2.14) are combined to yield

is _ f c x x t) dx (2.15)
s d 31 ' ax 2

x i
i-1

Using Kirchhoff's current law for node 1 in Figure 2.2

i s = i F  + i . ( 2 .1 6 )

furthermore, for the circuit shown in Figure 2.2

V(t) = -RFiF(t) (2.17)

and since for an ideal op amp (34)
* ,5.% *5

* °,' ,'

=-, 

," - .
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i 0 (2.18)

the output voltage Vo(t) becomes

Vo(t) - RFis(t). (2.19)
0' F

The final result is obtained by combining eqs. (2.17) and (2.21)

X. 2

V(t) (xt)dx (2.20)
0ot : s I 2

ai

where Ks Wdhd3 c E RF

Equation (2.22) represents the electromechanical equation for the

sensor perfectly bonded to an elastic beam. It provides the voltage

output of the sensor as a function of the strain distribution.

Limitation of the Distributed Sensor Model
I . - PV

Consider a unimorph piezoceramic sensor bonded along the entire

length of a simply supported beam as shown in Figure 2.3 where h is the

distance from the neutral axis to the upper beam surface. The motion of

the beam under conditions of free vibrations is approximated by

W (x A sin T sin nt (2.21)
)I n L nn = 1 v -

By considering only the first term of the series PAW
', .... .. ,

4.2' 2*. 
s.n=1: , sin "- os "-t (2.22)ax2 L A1 1.

.4

•°." .
.. T* %.,.,,,...." , %..' ." .% -% % " % % -,,% ." .% % ". % % ",., ... ' , ." % " . ." ."
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From eqs. (2.20) and (2.22)

n=1: Vo(t) = 2Ks C 1A1 coss 1 t a (2.23)

For the second term of the series gives

n = 2: V(t) = 0 (2.24)

Under pure second mode excitation, ideally half of the sensor

would be under compression and half of it would be under tension

resulting in a zero output voltage. Therefore the limitations of the

sensing model is that the highest frequency for control is limited to P_

that below the modal density which results in a nodal line within the .,
domain of the sensor.

2.2. Actuator Transducer

35
In a previous study , a finite element model for a beam with an

electrostrictive transducer has been derived using an energy approach.

The electrostrictive transducer behaves similarly to the piezoelectric

transducer with a driver with an applied voltage. In this thesis a

model is derived using a force equilibrium approach (Appendix B) and

agrees with the previous work.

The piezoceramic actuator configuration is basically the same as a

sensor except that in this case a relatively high voltage of the order

of 100 to 120 volt(RMS) can be applied to the piezoceramic plates. When

a high voltage is applied, the converse piezoelectric effect occurs

which results in a deformation of the piezoceramic material. A

particular unimorph can be polarized such that a positive electric field

results in an elongation in the directions perpendicular to the

*o'.
d8
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polarization vector with a simultaneous contraction in directions

parallel to the polarization vector. A negative voltage would result in

the opposite responses. 0

When an actuator transducer is bonded to an elastic structure it is

constrained and as an electric field is applied the actuator tends to.

elongate or contract the resulting body.

A composite structure consisting of an elastic beam and two

piezoceramic actuators is shown in figure 2.4. The two unimorph

actuators bonded to the top and bottom of a thin beam and wired in such

a manner that when a voltage is applied to the transducers the bottom

actuator expands and the top actuator contracts. To analyze this

sandwich construction, an inverted form of the constitutive equations

2.1 and 2.2 are (Appendix A)

T11 (x,t) = cDiSll(x,t) - H3 1D3 (x,t) (2.25)

E3(xt) = " H31S11 (xt) + 1 D3(x't) (2.26)

-33

where

S =11 Strain

Tl Stress

D3 Charge per unit area
3
c = Elastic modulus with the piezoceramic circuit open

£33 = Dielectric constant at constant strain

31 e 31/11.

S.:-2
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E = Electric Field.

Since the drivers are fully covered with electrodes the electric field

E3 produced between the plates for a given potential applied can be

considered only dependent on time.

Because of the direction of polarization E3 is assumed to be much

greater than E1 and E2. Since E >> E1 and E3 >> E2 , assuming E= E2

0,

8VD

E av (2.27)
3*. a

or

VD(t) = E3 (t)6 (2.28) .

.'€.

where 6 is the separation between the electrode plates.

The potential applied across the plates of the top unimorph is then

equal to % %

h+6 h+8
V 3(t)dz= (-HS + 1/3 3 D3 )dz (2.29)

h h .

Furthermore when pure bending is assumed,

Sl(X,t) =- z- a2w (x,t) (2.30)
ax2

and the piezoceramic is a dielectric material that is polarized in the z

direction, the charge within the body is governed by (Appendix A) ' .

5.-...
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D 3  0+ D 2 .1
_ a~~z 0 3(x'y't) (.1

-M Using conditions given by eqs. (2.30) and (2.31)

62 2 36VD(t) =-H3 (h6 +- ) -~ + -s(2.32) ,,

3x2 £33

Solving for D3 for a constant unit width actuator in eq.(2.32) gives

E33 H3133 w (x,t) (3
03(xt) T VD(t) + 6 (h6 + 7) t) (2.33)3 ~ ) 62 ax 2 ;

Equation (2.33) is simplified to .""

2
D3 (x,t) V t ) + e3 1 h 3w (x t) (2.34)

since 6«h and H31 = /E and it is assumed that piezoceramic used

C3 E=1 This assumption is valid for PZT type ceramics. Substituting

eq. (2.34) into eq. (2.25) yields

Ti1  - C ih + 2 e31 V (2.35)
11 ~ 1 11EI

and since
e2
31 z .012

£11 c11

eq. (2.37) can be approximated by

h<z<h+6 
..

T l cD h  2w e3 1 V (2.36)
1 x2  6~ c11nax

2  6 (t) (.6

-(h+6) <z<-h.

S.i

,-'S 
.

________________ ~~ *.~.-2K
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Given two unimorph actuators wired as previously mentioned, the

moment for at any cross section of the beam of unit thickness is given
as

h 2 -h h+6 P..N

M(x,t) - Ez-- dz +f Ti1z dz + f T1 1 zdz (2.37)
-h ax -(h+6) h

h+6 a2w
2 D 2 _ e31

M(x,t) El -  - 2 J (c' 2 - VD(t))dz (2.38)8x2 h 11 2  6-..D-

Neglecting terms that are multiplied by 6 and 6*6 the final result is

M(x,t) El w  (xt)_ 2e-3 1 h VD(t) (2.39)ax2 :.. ..

where e31 is equal to e31  times the width of the actuator.
3 31 %

If only one surface has an actuator the moment equation is

a. 2w(t)
M(xt) EI (x,t) KV (2.40)

ax2  ()(.3

.9 where

SD =
3 1h

From eq. (2.40) certain observations are made. As a voltage is

applied to the piezoceramic unimorph it is equivalent to adding opposing
' % .9-.% .

.1 couples at the ends of the section whose sign is dependent on the sign

of the applied potential to the plates

f

7Z . .. . .. -; - ", o. " . . • . " -. "w ", . " "- - " "- - " "- ,.' .'- '- " . "- ". ., " ,'- '- - " . -, - ." -*" * " * " .
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Consider a structure as shown in figure 2.5, with no external

forces. For an applied DC voltage VD to the actuators eq. (2.40) becomes

KDVD EI aw (2.41)
Dx2 •

Integrating eq. (2.41) twice and solving for the unknown constants using

the boundary conditions at x 0 and x = L gives

KDVD x2
w = D- 2 x (2.42)

For the same structure without unimorph piezoceramic layers and loaded

as shown in figure 2.6, the resulting expression for displacement is

M~2

w= (2.43)
2EI

2

A comparison eqs. (2.42) and (2.43) further supports the observation

that a piezoceramic unimorph driver produces equivalent point or

concentrated external moments proportional to the voltage applied.

2.3. Analysis of Active Electronic Feedback Damping Using

the Finite Element Method

A finite element approximation of the coupled sensor, actuator and

structure is developed in this section. In previous studies, finite

element models for such an active structural dynamic system have not

been developed. To accomplish this a beam with only a piezoceramic

unimorph actuator is considered first. Later an element consisting of a

collocated sensor and actuator transducer is examined.

.....................................
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The beam drawn in figure 2.7 is analyzed in Appendix B. Equation

(8-17) from this Appendix is the resultant beam element matrix equation

neglecting the elastic stiffness contribution of the actuator

V e 12 wi 1  e

M + KDVD = -6L 4L2  sym. (2.44)

V. -12 6 12 w
1

Mi KDVD -6L 2L2  6L 4L2  e.

[K e-

where KD ii the piezoceramic actuator coupling coefficient and VD is the

applied voltage to the actuator electrodes. As noted in eq. (2.41), the

contribution of an applied DC voltage to the actuator is equivalent to %

the application of two equal an opposite couples at the element nodes.

If an AC voltage is applied to the actuators then the applied

moments would be dyr iic in nature and the response of the FEM model

could be determined given the mass matrix of the system.

For a system considering only the mass of the structure and not the

transducers, the resulting equation of motion could be written as S.
f. '.-

w_ wi.I  Vi-(t)

1 1 (t) + KVEM ,- K -1i1 DDt (2.45) - ':

w i  w i  Vi (t) "

i  i  M(t) -KDVD(t)

I~4- ~ &~ . . . . .. . 4*.

L.....
-"/ ' " ' " " ' : ;'- " " , " 2-' .'" " -',/ '.".' -'" ".""¢ '". '-' . " .'" '2- --'"• . . -. • . . .'/ .. .. " . ." '- " -- -- - -..- --. ." .--i
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In reference 35, the same element eq. (2.44) is obtained by using the

method of weighted residuals. When the ratio of the thickness of the

actuator to the beam is much greater as in reference 35, the

contribution to stiffness and mass of the transducer must also be

considered.

The structure shown in figure 2.8 is considered. A transducer is

bonded to the upper surface as a sensorsimilarlythe transducer bonded
.4..<

to the bottom surface is a actuator. The output voltage from the sensor

is increased in gain by a constant amount and supplied to the actuator.

Depending on either the orientation of the polarity vectors of the

unimorphs or the sign of the feedback voltage, the sign of the couples
at the element nodes is determined. With no other type of conditioning

.'4!A

of the sensor signal voltage supplied to the actuator is equal to

-. x.
1 2

. GK f a2 (xt) dx (2.46)
D(t) Vs(t )  2

xi - ax

where K represents the sensor coupling coefficient of eq.(2.20), and,-. S

- Xi1 and Xi are the locations of the element node points. If it assumed %'%

that the applied voltage to the actuator is slowly varying such that the

inertial effects of the beam can be ignored. The resulting beam equation

(Appendix B) for a collocated sensor actuator is written as

Si- w- 0 w-, V -i i -Iil-i

Me' 0 1 Sym.
i-1 ii-1 *,J.

[ El + KoKs  (2.47)
Vi w 0 0 0 w

M 0 - 0 i

CE

~ 4'..- . V ' V A'.~"A'.. 4
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The element matrix [CED] is multiplied by the velocity of the

element displacements and rotations. As such, it is considered as an

equivalent viscous damping contribution to the element. This matrix can

be called the "electronic damping" matrix.

A four element approximation of a cantilever beam with various

sensor and actuator configurations is shown in figure 2.9. By adding

the additional assumption that a sensor can only supply a feedback

voltage to an individual actuator, the corresponding global system [CED]

matrices for each case is shown. Case B of figure 2.9 indicates that for

non collocated sensors and actuators that the [CED] is no longer

symmetric.

For the configurations shown in figure 2.9 the total inertia matrix

for the complete structure is 4

-C 4

[M] : [As]T[Ms][As] (2.48)

where [A] is a rectangular matrix that is used to assemble the element

• mass matrices into a mass matrix of the entire structure.

Similarly,

4

[K] : [As]T[Ks][As] (2.49) _Z I

s=1

is the assembled system stiffness matrix.

Depending on the global location of the sensor/actuator active

elements, the system electronic damping matrix is also assembled as
- J-.:

C.. ,-
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~4 4f

i4.!

020 2..-

KsKD 0 0 0 S..
C 0 - 0 2

3 0 0 0 0 0
L 0 0 0 -1 0 2

0 0 0 0-1 0 1

B: -%

44,"

CED KsK-
L3 0- 0 00

0 1 0 -1 ["'
0 0 0 0 [0]
0 -1 0 1

Figure 2-9 Active Element Configuration Examples
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4 . 4

4 S
[CED] = SB C ED S (2.50)

S=1

where [B ] is a rectangular matrix coordinating the location of the

sensors and their respective actuators.

The vector of all the non conservative joint forces for the system

with electronic damping is written as

4 4

(Fi } = I [ (?I - V [8 i3 [C (2.51)
LL EDI[BSJ

Vs=1 S=1

The equation of motion for the complete structure is

[M - + [K) {F i } (2.52)
1i ei

where the non conservative nodal forces are defined by eq.(2.51).

Combining eqs. (2.51) and (2.52) and excluding all viscous type forces
4 .- ' II*

from the non conservative force vector gives
.. '...-

(w.
[MI. C] + LCED] + [K] = (Fi} (2.53)

% N

where the internal damping matrix [C] is defined as

* .4-44 [A]i].. ..

[C] [A IL[LI[A 1 (2.54)L SS
S=.
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The contribution of the electronic damping matrix in eq.(2.53) is

directly related to the internal system viscous damping matrix for rate

feedback between the sensor and actuator (no filtering).

It will be shown later that when signal conditioning is used to b-.

selectively increase the damping for a particular mode that for other

than a special case, the feedback will add to both the stiffness and .

damping of the system. S

2.4. Model of the Feedback Active Control Electronics

A specific type of signal conditioning electronics is now examined.

Schematic drawings for the prototypeelectronics are shown in Appendix D.

From the results presented in appendix D the final model of the active

control filter unit was determined to be

+2 Gwf
1+ (,f/Q) 1 + 2 (2.55)

where Wf is the filter center frequency

Q is the filter bandwidth

G is the gain

VD is the voltage to the actuator

V is the voltage from the preamplifier.

For r sensors and actuators eq. (2.55) can be written in the

following matrix form.

GI(V0 +i {0+ + -b-3 {VD} (2.56)

where "a = [w/Qi] " -.

-" "-,[a . -, T .

, a, ,.......... ...-. ......... ...... .. . . ....... .....-. ... . .' ...,- -.

A. , 
"

." ," ..- -".- ""-_ _ _ _ ______ _ _ ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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• p.-.

2= l .....JC- b., -3 f .

Solving the integral of Equation (2.20) for a particular sensor

element yields

V(t) = Vo(t) K - 6i] (2.57)

iiCombining equations(2.57)with(2.56)gives

E ])0} + a {D [(b ] {Vo = [s]ETs]{qi}2

+ = (2.58)

where

w{qi } =;-.

[T s is the sensor location matrix containing 1's,

-l's and O's (rx 2n)

and Ks] : Qi Ksi(rxr)

For the structural system excited by only actuators the matrix equations

are written as

.. :. -.

[M] (qi} + [C]fi + [K] {qi} = {ED} (2.59)

The actuator force vector contains only nonzero moment terms and can be

expanded to yield

(FED) [To][Ko]{Vo} (2.60)

.- %
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where CT DI is the actuator location matrix matrix containing I's ,-i's

and O's (2n x r) and [K is a diagonal matrix of the actuator coupling *

coefficients.

Combining equations 2.56, 2.59 and 2.60 yields

IfV 01 + [a ] [VDl + [bJ(VO1 [Ks][Ts] {qi} (2.61)

[Ml(q} [] q.} + [K] {q.} [T][K]V (2.62)[ 1 14i +1C D O D

I Eqs. (2.61) and (2.62) represent the coupled pairs of differential

equations modelling the active structure conditioned with a modal

feedback filter system. Previous work~ has developed a similar set of

Iequations for control of a plane grid structure using accelerometers

sensors and electrodynamic shaker actuators.
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CHAPTER III

IDENTIFICATION OF DYNAMIC COUPLING COEFFICIENTS

In the previous chapter a finite element model has been developed

for the closed system consisting of an Euler-Bernoulli beam, sensors,

signal conditioning subsystem and actuators. This model, with discrete

degrees of freedom will be used to develop optimal control strategies.

In order to implement analytically developed optimal control algorithms,

it is necessary to establish the model parameters accurately.

Identification procedures are used to estimate the model parameters.

The identification is necessary because of the approximation of the

structure by a system of discrete degrees of freedom, assumption of the

bonding effects of the transducer to the structure by coupling

coefficients, idealization of the signal conditioning system by a second ..J

order equation and the unknown damping parameters.

There has been a significant amount of reported research work in

the field of the identification of benign structural dynamic systems or

:f 65open loop systems that do not have feedback effects However, there

is no reported research work in the field of identification of an active

structural dynamic system or closed loop structural dynamic system with

feedback. In the following sections, the development of procedures to

identify parameters of the model for closed loop systems and the .4.

application of the procedure to selected beam systems with measurements

are discussed.

od
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3.1. Equations of Identification

A system shown in Figure 3.1 is considered. This system was been

approximated by n finite elements each with a unique sensor/actuator

pair bonded to it with its own individual signal conditioning system or

feedback control processor.

Equations (2.61) and (2.62) in Chapter II form a coupled pair of

equations describing the overall feedback control system. The Fourier

transform of Eq. (2.61) yields

2[-w [M] + jw[C] + [K]]{q(w)) =[F (w)) + (F ()} (3.1)

where as 
before

{q(w)} : (3.2)

{F } = Active actuator control moment vector
c

(Fe I External applied forces and moments

The Fourier transform of eq (2.56) yields

[ci - aw 2 + jwbi]VDi (W) j WV (W) (3.3)

where,

ai = Q/Gwf, bi = 1/G, ci  Qwf/G (3.4)

Taking a slightly different approach than Chapter II, the control

force vector {F c (w)} when expanded has the following form
(F M}=] ( T (3.5) "

Fc(w)= [0 (MI - M2 ) 0 (M2 - M3) ... (MnI- Mn) 0 Mn] (3.5)

Solving for Voi (w) in eq. 3.3 the applied moment at an actuator element
Di

node is

- jW (W.) (3.6) ;
Mi(w) = Di (ci - aW2  + jb i  (s3i

1 jwb. 7V, (w)

?,% -
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Using eq. (3.6) and the fourier transform of the sensor eq. (2.20) in

Chapter II yields, N

M = Koi (ci aiw2K + jwbi (3.7)

where,

D. (3.8)
D 1 1 K~i KsiK~ i ... ..

By using a notation

-W2hf m):Ki -2 (3.9) .v'

(c -a i  + jwb

Therefore

Mi(w) hf.(,)[O(xi) - (Xil)]  (3.10)

Equation (3.5) is rewritten as follows

{Fc(,)} : [0 MI 0 M2 ...Mn]
T - [0 M20 M3 ...MO 0]T (3.11)

By using eq. (3.9) the first vector component is equal to

0 0 0 0

[0 M 1 0 M2 * M n] 0 h0{qi} (3.12)
0 0 0 0

-hf 0 h
22

0 0 hf

If- it, .. C

9<

• A % ',• • " % -.- .-. . . - ' - . - . ,- , - - . - , '.,. - ..- . •.
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and the second component is equal to

--0 0 0 0

T 0 h f 0 -h fl*i
[0 M1 0 M2..MO O = hf2 2 {qi }  (3.13)

0 0 0

Combining eqs. (3.12) and (3.13) yields

% (F (w)} [H ( q(w)} (3.14) "
. [ 2(w)]

where

- 0 0

0 hf+ hf 0 -hf
f1 f2 f2

0 0 0 .[H ( ) ]Ml (3.15)
-h 0 h+h 0 -h(
hf2 2 3 3  '. %

0

-h

3*~ o',3

Combining eqs. (3.1) and (3.14) further yields ,---.'

[[] w [M] + w C)] C] - 32M]+wC [H2 (w)]j(q(w)) = {Fe(,)} (3.16)

By denoting

[H3()] [[K] - w2 [M] + jw[C] - [H2(w)]I (3.17)

. '

3.
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the following equation is obtained .

fq(w)} = [H3(w) ](Fe(w)} (3.18)

3.2. Identification of Feedback Filter Electronics Parameters
Parameters ai , bi , c i of eq. (3.4) can be calculated from a

knowledge of the circuits of the signal conditioning system. However,

the actual values used for active control were determined from

experiments which measured Vs (t) and VD (t) and applied a least

square identification procedure to the real and imaginary spectral data.

The admittance function of equation (3.4) is

Vs (W)
Zi(W) = 1 = b + j(a.W - c./W) (3.19)

1 D (w) i 1 1

Expanding eq. (3.19) into real and imaginary parts yields

ZRi(w) = bi  (3.20)

Zii(W) = aiW - ci/W (3.21)

The real and imaginary spectral data was obtained by computing the

transfer function between the wideband random sensor voltage signal and

high voltage output signal. The uncorrelated noise can be reduced by

computing the transfer function by dividing the autospectrum of the

input voltage by the cross spectrum between the input and output

voltage.

For n data samples, the following matrix relation can be written

for a particular feedback system.

..

#, "# p

V % v ~*~*SS*~P ~ ~) * ~ 45 ~ - ~ ~ ~ . ~ *1
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Z R (W1) 0 +1 0 -:%

C
n a i a _

" ~ (Wn) b =b -:-

R 0 +1 0 1 " _" __

-[Z} =c 2 c. -'
Z 0a [1/Ji _ fZ) ZI(wI) "i 0 - / I - ".)'.'.

. ..

iZ (W n) W"n 0 -1/W n  -' .

0 r ,.-.

'-I L{Z] yI }(3.22)

where

a 
"IN,

(y} b (3.23)

From exact values ofa b.~ an eqaio 319 .. *4
f bi and c equation(.19)is exactly satisfied. .1

For other values of ai, bi and ci an error matrix is defined as

7 -..- 7
.4.
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(e) = [Z} - [c]{y} (3.24)

and a square measure of the error is

J={e}T (e} (3.25)
Minimizing J with respect to each unknown parameter leads to the

identification of the parameters ai, bi and ci. Each sensor/actuator

control system requires n independent identification computations.

Equating the partial derivative of eq. (2.25) with respect to y to

zero yields
o." --.

S. T
aee+ eT = 0 (3.26)
ay 8y

or SeT

2-e 042 y e 0 (3.27)

Using Eq. (3.24) and eq. (3.27) solving for y yields

(Y}=CC)E)~E) Z (3.28)

Partitioning the matrices of eq. (3.28) yields

()= [ T C T*J1(C T + CT Z11 (3.29)
with the matrix inverse equal to

0 2
- n2  a- n 24.

11 2 0 1/n 0 (3.30)

n .
2 0 2

ao .n-

7i

i -A

°° %° %
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where

1i' 4 (3.31)

n

C : i (3.32)
L.1 .

n E number of samples 4t'

Also

T 0] = (3.33)

and F~
CTZI : (3.34) .... '

d  3

where
n '

d + Z (3.35)i 1 i 4.,.

[' £4.d 2 :+ ZRi (3.36) ,- ,...

i:1 ....

I-,. 4.

d - iWm (3.37)
i =1 "
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Using these relationships eq. (3.29) is written as

0 n -
2  0 - 2

-aO n n

b 0 1/n 0 d (3.38)

3n 0 2L

Solving for the unknown parameters gives

d3  -... .

(dl + d3h)a = -(3.39)...

b= d2 /n (3.40) -.

nd1 + d3a ;c = n2 ~(3 .4 1 ).. - .
LO- n, Jt~

Using the relations described in eq. (3.4) the final results are

G = 1/b gain (3.42)

Wf = c/a center frequency

Q = IFacfilter bandwidth.
4b

A computer program has been written to compute the feedback system gain,

center frequency and Q from experimental admittance data.

,, ,, ,

,,' .,d ",
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The procedure for identifying the feedback filter control

coefficients (ai,b i and ci) is as follows. A wideband 1.0 volt rms

signal was sent thru a lxlOE6 ohm resistor into the input of each

control unit. This produced 1xlOE-6 amp wideband input into the

preamplifier. With the gain set at 1x1OE6 the output voltage was

expected to be 1.OVrms. The transfer function was taken between the

input voltage and the output voltage with the control units set for the

different control experiments. The frequency, real and imaginary

spectral components were saved and processed by the identification

scheme for different selected bandwidths about the filter center

frequencies. As a comparison to the identification scheme, the center

frequency and damping (Q) for a single degree of freedom model curve fit

using the Genrad complex estimation routine 51 was used. The

identification results using both methods are listed in table 3.1. 
.

'4..

Figures 3.2 to 3.5 are analytical functions using equation (3.7)

and the identified values from the least squares method over the actual

experimental wideband transfer function data. The fit for the first mode

is better than the second mode. The high gain second mode fit was the ..

poorest (figure 3.5).

3.3. Baseline Model Development

Equation (3.28) represents the model of the structure that is

controlled by using piezoceramic sensors and actuators and a particular

feedback control system. The approximately known feedback control system

coefficients (ai, bi, and ci) are first individually identified for a

particular experimental setting. All that remains to be identified then

4."

, e:. :--
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Table 3.1 Identified Filter Coefficients

Least Squares Identification

Mode QG Freq. (Hz) a b c

(Low Gain)

1 16.7a7 .962 58-.84 5.722E-02 1.040 6.453E+03
2 15.887 .814 368.09 a.439E-03 1.229 4.514E+04

(High Gain)

1 14.756 3.664 61.22 1.047E-02 .273 1.549E-03
2 14.800 1.633 379.70 3.800E-03 .612 2.162E+04

KGenrad Poly. Fit

(Low Gain)

1 15.437 .845 59.10 4.809E-02 1.157 6.630E+03
2 15.625 .794 369.72 8.467E-03 1.259 4.569E+04

(High Gain)

1 14.505 3.566 61.37 1.055E-02 .280 1.569E+03
4.2 15.461 1.669 382.76 3.852E-03 .599 2.226E+04

Notes: a0Q/(Goj ), b=1.0/G c- 2 ".a

Jk
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is the dynamic coupling coefficients defined in eqs. (3.1) and (3.3) and

the mass stiffness and damping matrices of the baseline non controlled

system.

To obtain the mass, stiffness and damping matrices of the baseline

system an identification scheme appropriate for structural systems with

45non proportional damping was used. A brief outline of the procedure

used is presented in Appendix C.

The baseline matrix identification system requires a full set of

eigenvalues and eigenvector data as well as some a priori mass,

stiffness or damping data. From this information the identification

scheme is used to identify the remaining unknown matrix coefficients. "-1

Two discrete models were selected for the cantilever beam shown in

figure 3.6. Model #1 consisted of five translation and five rotational

degrees of freedom and model #2 consisted of five translational degrees

of freedom. The two models were identical except for reduction of the

rotational degrees of freedom in model #2. Model #1 represents the

coupling of the transducer in the structure more accurately because of

the retention of the rotational degrees of freedom but has the

limitation of the difficulty of obtaining rotational eigenvector data

66
experimentally. Model #2 uses Guyan condensation to eliminate the. ,

rotational degrees of freedom and therefore is expected to increase the

overall identification error. However the requirement of using only

translational eigenvector data which are more accurately and easily

measured justifies the investigation of using such a model. The mass

°
%

%". °

.. ; I-. "

. . - . . . W ' 'w o N % . ,, ,, . % % W . ' ,' . . . % , . . . . - . - . " . . .
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stiffness and damping matrices for model #1 are identified using the

following information:

a) selected mass elements from a STRUDL67 finite element model

b) experimental eigenvalues and damping for modes 1 to 5

(Appendix D)

c) experimental translational eigenvector data for modes 1 and 2

d) the analytical eigenvalue data for modes 6 to 10 with an

estimated .005 damping value for these modes

e) analytical translational eigenvector data for modes 3 to 10

f) analytical rotational eigenvector data for all the modes.

For model #2 the following has been used:

a) selected mass elements from the finite element model

b) experimental eigenvalue and damping for mode I to 5 (Appendix

D)

c) experimental translational eigenvector data for mode 1 and 2

(Appendix D)

d) analytical translational eigenvector data for mode 3 to 5

The identified mass, damping and stiffness matrices are listed in

tables 3.2 and 3.3.

To verify the accuracy of the identification of the baseline 1

matrices a computer program has been developed to compute the transfer

function matrix of either the 5 or 10 of models. The analytically

generated transfer function matrix results were compared to baseline non

controlled experimental results. The identification scheme45  can

Pd,

S.W

SW ..

4' W'.J.k" %" " "
%

4'
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Table 3.2 Identified Baseline Stiffness, Damping, and Mass Matrices .r

For Model #1.

(LOWER TRIANGLE)

STIFFNESS MATRIX

.1043E+05
-.5710E 04 .1098E 05
-.8738E04 .8345E04 .1898E 05
-.6958E04 .4027E+04 -.2148E03 .1398E+05
-.2321E+04 -.1831E+04 -.1488E*05 .7700E04 .6888E 05
.2257E 04 -.1040E+04 -.6262E+04 .1463E+04 -.1427E 05 .1815E+05
.3391E+04 .1908E+03 .4220E*04 -.1169E04 -.6031E.05 .2219E05
.6422E05

-.2810E*03 .6290E03 .28712.04 .1318E+04 -.2253E05 .3808E04
.2013E 05 .1652E+05

-.5077E+03 .22862*03 -.7976E#03 .8871E+03 .4635E+04 -.1253E04
-.6046E*04 .1193E04 .2223E04
-.2772E+03 .4862E03 -.5310E.03 .5983E03 .2199E04 -.5963E 03
-.4338E04 .2142E04 .2674E04 .4277E+04

DAMPING MATRIX. 1-

.2787E-02
-.3751E-03 .1822E-02
-. 1301E-02 .1216E-02 .3377E-02
-.41912-03 .7339E-04 -.6964E-05 .123SE-02
-.2700E-04 -.5177E-03 -.2136E-02 .5314E-03 .5440E-02
.19512-03 -.9349E-04 -.3872E-03 -.24442-03 -. 8060E-04 .8791E-03

-.8227E-05 .4497E-06 .5284E-03 -.1334E-03 -.3792E-02 .4142E-03
.4836E-02

-.73312-04 -. 48452-04 .1929E-03 .2390E-03 -. 7764E-03 -.2174E-03
.4771E-03 .1208E-02
.5578E-04 .520S2-04 -. 1709E-04 .5662E-04 .5084E-03 -.3209E-04

-.1041E-02 .1281E-03 .7587E-03
-.1492E-04 .1352E-03 -.1479E-03 -.1527E-04 .5153E-03 .1254E-05
-.81232-03 .18862-04 .4809E-03 .7362E-03

MASS MATRIX

.4497E-04

.7122E-05 .6332E-05

.4962E-05 -.2143E-05 .3163E-04

.20452-05 -.6569E-06 .6267E-06 .1840E-05 .. , %

.5562E-06 -. 2560E-06 .5783E-05 -. 1772E-05 .2311E-04 '.

.1737E-07 -. 1180E-06 .1750E-05 -.6884E-06 .2230E-05 .9130E-06

.3080E-05 .5255E-06 .1336E-05 .3735E-07 .4409E-05 -.4061E-06
:3839E-04

-.8535E-06 -.8135E-07 -.8801E-07 .1357E-06 .7087E-07 -. 1992E-06 4.-

-.1018E-04 .5064E-05
-.1114E-05 -. 1047E-06 -.1127E-06 -.1637E-06 .1754E-05 .9116E-07 j
.1195E-04 -.6727E-05 .4287E-04
.2521E-06 .8915E-07 -.4543E-08 .2174E-07 .6386E-06 -.2405E-08
.6743E-05 -.3733E-05 .1110E-04 .5017E-05

%. ..- -

m= " i "' " '-- " ,' "x '-"""" " " - " .. C" " -"
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TABLE 3.3 Identified Baseline Stiffness, Damping and Mass

Matrices for Model #2

STIFFNESS MATRIX

.6051E04
S- .5227E-04 .7623E*04

-.4608E+03 -.5286E 04 .1468E+05
.3063E 04 .8083E03 -.1157E+05 .1167E+05

-.5584E03 .1088E+02 .1858E+04 -.2124E+04 .4465E+03

DAMPING MATRIX

.2715E-02
-. 1433E-02 .2241E-02

-.5987E-03 -. 7677E-03 .3768E-02
.9774E-03 -.4103E-03 -.3073E-02 .4042E-02

-135-03 .7586E-04 37E-03 -.6770E-03 .3467E-03

MASS MATRIX

.5127E-04
-.141E-04 .3923E-04
-.1045E-04 .2311E-05 .5055E-04
.2018E-04 -.5171E-05 -. 4475E-04 .9477E-04

-.3630E-05 .3583E-05 -.2714E-05 .1040E-04 .2214E-04

4.-.

.4.

->4
f.,

.'4%

. . 44

4, -°oO
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only identify the mass, damping and stiffness matrices to within a

scalar. Therefore the analytical and experimental transfer functions

differed slightly. The identified matrices were scaled to match the

experiment data at one frequency location (380 Hz). Comparison of the

real and imaginary parts of the transfer function data of the

experimental and baseline models for modes 1 and 2 is presented in -".'

figures 3.7 to 3.10. In table 3.4 the scaling values have been listed.

Both models adequately identified the first two modes of the

structure. The greatest variance between the models and the

experimental baseline results occurred in the real part of the first

mode. .

3.4.Identification of Dynamic Coupling Coefficients ..Ov,.

The coupling coefficients and the sensor/actuator parameters are

contained in KDi as defined by eq. (3.8 ).This constant when expanded . .

yields

KD =s d (wsh d31 c R e wdh) (3.43)
D S 3 1 3

with units defined as

[C OHM][NM/V] = NM sec or in lb. sec.

Let E =s~d represent the dynamic coupling of a particular pair of 'A'

* collocated sensor/actuator to the elastic beam.

It is assumed that the following transfer function matrices are

available,

49

51. -4

4."-- "1 .::"
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Table 3.4. Scaling Values to Match Baseline Experimental Results

MODEL # VALUE

1 1.5307
2 .975

Note: Experimental and Analytical Results matched at 380 Hz.
in magnitude.

% 2

ft. 'f.."q

,\t.

.5

'f,.t-

ft 'ft
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. J. , .

CH (w)] experimental data
ex

[H3 (w)] analytical prediction.

An objective function is defined as the difference between the

experimental and identified analytical prediction and is written as

follows:

Sn w n.
J f Hek ( k) - H3 ( k k2ex Hex2 (~ w H (W) H 3(W)12dw, +•...,., -

11 2 2. %
wk=1 k12 2=2

(3.44)

where for selected frequency bands the error is defined as

lek iHkx(,)ij - H-k )ij.

is squared and summed over all the transfer functions available.

Minimization of the objective function is then done with respect to the

unknown parameters and the parameters identified using a modified ,.p,-,,.

Marquardt approach ".

For a structure with a single collocated sensor/driver pair eq.

(3.44) reduces to

w2 n

fxw H3(w)I2
J i ef (w) H dw (3.45)WI k=1""":.

Using eq. (3.42), eq. (3.43) can be rewritten as

NPTS N FUNCTIONS

Wi [ek ek] (3.46)
i=1 k=1

_-_..-.A
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where Wi2 is the appropriate weighting matrix factors for the

integration and NPTS are the number of points used for the integration,

and * denotes the complex conjugate.

To identify the unknown parameters (dynamic coupling coefficients)

the objective functions defined in eqs. (3.42)and(3.45)are minimized with

respect to these parameters.

Briefly, suppose that a is a vector which makes the objective

function J(a) a minimum. Let a be the estimate of after the ith

iteration. As shown in reference 78 ideally the i+1 iteration should be

. '- L

i+l i "+ - p[Ri] qi (3.47)

where p is the step size, Ri is a positive definite matrix and qi is the

gradient vector of the objective function. When Matrix Ri is positive1

definite the direction of the next iteration is acceptable 78 (i.e.,

improves the minimization). When Ri is the identity matrix the method

is referred to as the steepest descent. To improve the iteration

method an approximation of the objective function at the minimum can be

used. An approximation of the objective functions behavior at a minimum

is achieved by a second order Taylor series expansion of the objective

function about the ith iteration value. Equating the derivative of the

second order expansion with respect of the unknown parameters to zero

yields

.i+l. i( 4
-aiH q. (3.48) . ,

1 1"%'

,". *I

~L./ ** *p *. *. ~ .~ j. . .~ *... . * - .. .* . ~..~ .-. >~.-.-. . . ."*.°. .n
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where H. is the Hessian Matrix.
1

As mentioned in reference 76 various methods have been developed to

solve the iterative scheme defined by equation (3.48). The particular

method used for the identification of the dynamic coupling coefficient

76
was the modified Marquardt method. Two particular features of this

method are that an approximate Hessian matrix is used and iterative step

size is modified prior to each iteration. The method required close

estimates of the dynamic coupling coefficients for successful

convergence. This was not a problem since the range of the dynamic

coupling coefficient was between zero (unbonded) to one (perfectly

bonded).

The first and second order derivative necessary for the method were

computed as follows. Taking the derivative of eq. (3.46) yields

NPTS N kaJ 12 , aH3 •
-2 W 1 Re (e 3 (3.49)a&; . Wi ek a' -

i=1 k=1

where from Eq. (3.17)

[H3 (w)] = [[K] - 2[M] + jw[c] - -12(W)] (3.50) *'

where [H2(w)] is the contribution of the signal conditioning system.

From the following identity

[A] [A] [I] (3.51)

%

.°,p

.C %'%

St-

C, , - " % • • " % % % " .% % % • " ." . ." ." .- .-
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if

- [A ] -[A ] [0] (3 .52 ) t le

a [A] - A]'[ [A][A]"1  (3.53)

"* Since the only unknown parameter is { from eqs. (3.46) and (3.50)

(C,.-,

- [H3] = - [H3 ][ H2][H 3] (3.54)

or
H [ 3] [H 3][ a& H2][H 3] (3.55)

From eq. (3.9) and the definition of K0D any particular non zero

element of H2 is

s(Wshd31c 1 RF)(e3 lwd h)(-w
2)

hf (W) = (3.56)hij (ci  aiw2 + Jwbi 'c

Therefore

.- [H2] H2(w)] (3.57)
,.

e. Eq. (3.55) becomes ,N

[H3] : [H3] H2  [H3] (3.58) 5

By setting

.,[(

[B] )3 H • - .. . . . . .
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S4

Eq. (3.49) yields

NPTS N
81 z:2 V Re*k' (3.60)

1 L Reei~i=1 k=l1

When more than one collocated sensor/driver pair is used the

objective function becomes
5,..

NPTS N NPTS N
J : Wi lei 2  + W 4  lei1 2  + (3.61)

i=1 h=1 i=1 k=l

.5 Then for each unknown coupling parameter

NPTS N k NPTS N k
NiS N  aH iW. ,aH,."

-j 2 W 2  / 2e ~ 3 k* H3  + (.2
a & Re(e.2 0 Re(e + (3.62)

i=1 k=1 i=1 k=1

or using eqs. (3.47) to (3.49)

NPTS N NPTS N8J:2 12 ~e k)" W341 k"-
-2 W ( i R i + 2 i Re(e i B ) + (3.63)

i=1 k=1 iP1 k=1 ..

.5

where

S [H 3 L - H2] [H3J (3.64)

2.

"S . ' " I 2 , 2 , " , ' ' , , " .' ,' " L 2 . . ,
'

" " " " "" . . . " " "" " " " " " " " " " " "
" " - "
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For the Hessian matrix (eq. 3.48) the approximation of the second

derivative of the objective function J is.

W_____ ___ a ___' + (3.65)

for nb 37
NPTS N k* k a-

__m__ n  1 aH LB; ei 3  a~

m 1a ki 8e

exmpefo'to"enordrve.pir

NSe e

ac __ ac 1  ac a

@an = i 7Cm  C~n  a n  a m  .

k 1  :Z Z

It can be shown that eq. (3.66) reduces tovo cm i t

NPTS N k k k .-_2 a 2I ( H al( aH) H a H,tBmBn ~j "= Wi  R "-m 3 B~ I --- Im( - (3.67) ,"- .,-

i =1 k=l 1'..,

Saayclmdfor example, for two sensor/driver pairsd-- 2 (3.68) . , ;

1 2I

a~~ma~n (3.68) ..-

a& 1 8& 2  3E .2-'

~3.5. Analysis Procedure and Program Verification Results .-.

~~A computer program (EDMFPL.FOR) has been developed combining the ,-

analytical model of the system and the multiple sensor/driver
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identification scheme. The inputs to the program includes of the F...
particular model's mass, stiffness and damping matrices, frequency

bandwidths and transfer function element locations of interest, feedback

control filter identified parameters, sensor/actuator locations,

weighting matrix for the numerical integration and measured transfer

function data corresponding to the locations of interest. For model #2

(5 dof), the FEM condensation matrix has also been provided. In figure

3.11 data flow diagrams for the various programs have been illustrated.

Prior to identifying actual dynamic coupling coefficients the routine

has been tested by using analytical generated results from a simulation

program (EDAT2.FOR).

Estimated dynamic coupling and feedback control (ai, bi and ci)

filter coefficients for mode I and 2 control have been used to generated

a set of transfer function data. These tests were conducted using only

a single transfer function which was the tip translational element ie,

H99 (model #1) or H55 (model #2). In figures 3.12 the identified L

results around the first and second mode for the test #1 are presented.

The routine usually identified the unknown parameters exactly within 10

iterations.

Two set of experiments have been conducted on a cantilevered test

beam as shown in figure 3.6. Actual details of the experiments are

discussed in the Appendix 0. In both experiments the control of the

first and second modes of the beam subjected to impact loading have been

discussed. The identified feedback control filter settings for both

series of tests was previously presented in table 3.1.

Ile

%T, Z Zlrp ." .

*- l
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Baseline Matrix Development

10dofK 1

Analytical Simulationpr. 2

E XPR. . MCKID

DATA 4:F

M o e l 2 . I Sca e to Ep r. 2 : ;
- Data ._.C2

Analytical Simulation 5 2 d., K1

=EDAT2 

( ,, .-_,,

Coeffs.....

M2

C2
KZ%

Dynamic Coupling Coefficient Development

C,,i .~' :..:-

CI "" - %

p4; . W.,
/ ,.- .',,

/ ,",

M2  J,

C 2K,2

Figure 3-11 Computer Program Flow Diagrams "

6::-:
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In table 3.5 the identified dynamic coupling coefficients for the

different tests are listed and reflex the changes in the coupling of the

collocated sensor/actuator pair. For a perfect bonding condition the

coupling would have a maximum value of 1.00.

Figures 3.13 to 3.14 represents the quality of the matching of

the model with the identified dynamic coupling factor plotted over the

actual data for both models.

3.6. Discussion of Identification Results

From the final identified dynamic coupling coefficients presented

in table 3.5 various observations were made. The collocated sensor and j -

actuator pair with its filter tuned to the first mode was twice the area

in size as the pair used to the control the second mode and the dynamic

coupling coefficients reflect this. Also, the dynamic coupling

coefficients did not change substantially as a function of feedback

gain. The lower order model (5 dof.) results using condensation to

remove the rotational degrees of freedom differed in magnitude from the

10 dof. model but approximately followed the same trends.

The identification scheme7 '76 using the objective function and its

derivatives as defined in eqs.(3.42)1(3.61) and (3.65)was used to identify

the dynamic coupling coefficients separately to determine if their was

any interaction between the first two widely spaced modes. As expected,

the identification results did not change. .-

,.,

-. ' . . . . . . . .,...,
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Table 3.5 Identified Dynamic Coupling Coefficients

Model #1 fJ IT
1 f

Low Gain .1827 .1026 .5604E12
High Gain .2205 .1030 .3910E+12

Model #2

Low Gain .2348 .0648 .5170E+12
High Gain .3201 .0712 .4410E+12

I %

% IV

4,,4

'." 
* ,.

-a

.% .-.

'" /%

% .
' a' " . .
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An improvement was obtained by varying the filter center frequency.

The identified results for the high gain tests with the center frequency
.'v. -.

selected at 59.0 Hz and 375.0 Hz is shown in figure 3.15. The results

were sensitive to errors in the center frequency-which therefore should

be a key parameter to be varied in the identification. The predicted *

dynamic coupling coefficients were changed by 16 to 20%.

To obtain an additional measure of the accuracy of the

identification system, the square root of the error squared divided by

the maximum magnitude within a selected frequency band was computed. ?. ,

The error is defined as the difference between the experimental and

analytical predicted transfer function given the identified dynamic'6.

coupling coefficient (eq. 3.42). The results of these computations are %

presented in table 3.6. The first mode low gain results were the best

and the second mode results were the poorest.

The limitations of the identification procedure were primarily due

to:

a) Idenification of the single dynamic coupling coefficient per

mode.

b) Damping estimates and mode shape rotational coefficients of

the baseline model.

c) Single degree of freedom model of the feedback filter

electronics.

pp.
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Table 3.6 Error Computation Results Between Measured and __

Analytical Prediction Using Identified Dynamic
Coupling Coefficients

Mode 1 (50-60 Hz) Mode 2 (360-379 Hz.)

Low .470 1.14 -.

Gain

High .987 1.10
Gain

Note: Value reflects error summed over the bandwidth divided
by the maximum magnitude within the frequency band.

%.

4?

P. I

r' .. ,

'

%e ".% .-

• . .-

... ... b:
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CHAPTER IV

... V

MODAL AND PARAMETER IDENTIFICATION OF STRUCTURES WITH NON COLLOCATED
SENSORS AND ACTUATORS

In Chapter III, a parameter identification scheme has been
developed for an active structure with collocated sensors and

actuators. In this chapter, the case of non collocated sensors and

actuators has been considered. Two active structures shown in figure

4.1 is considered. Case A is an idealized structure with the

sensor/actuator pairs non collocated and case B is the corresponding

system with collocated sensors and actuators. It is assumed that the

translational degrees of freedom have been removed by using an

appropriate condensation technique. Furthermore, it is assumed that

only external moments are applied. For the purpose of illustration,

coupled differential equations for the structure and the control

electronics are written for a system with four degrees of freedom.

Non collocated:

Mll M12  0 0 Cl1  C12  0 0
11 12 1 1

M M 0 0 9C 0 0M21 22 2 + 21  22 00 2

K s -K sa 0 V 1 0 0 b11 0 1

0 o a 0 0 0 L
22°.2

4-.,

• -I

,:.4;
/j i ,.,, - .. % .. . , , ,.. # € ,. # ," . , ' .. '. -.. - . - ,,. . . , , . ,' - ' " ,* , ,-. w-.° . .,

#
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K K K KM11 12 D-K KD  1 1

K2 1  K22  0 -KD  2 M+ 2 (4.1)
0 0 d1 1 0 V1  0

0 0 0 d 22 _ 2] 0

Collocated:

IM 11  M12  0 0 C11  C12  0 0 1

M21  M22  0 0 2 C21  C22  0 0 2

-Ks  0 a 0 V1  0 0 b 0 V

K s  -Ks  0 a22  V2  0 0 0 b22  V2

K11  K12  -KD  KD  f I1

+ K21  K22  0 -Ko D e2 , 2 (4.2)
0 0 d11 0 0

o 0o do IvJ1 o0

By denoting

ij -w 2Mij + jwCij Kij (4.3)

S= w2a
O+ aj jwb.. + d.. (4.4)
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and fourier transforms of eqs. (4.1) and (4.2) yield

Non collocated:

}11 C12 -KD KD 81(w) M (W)

21 =22 0 -KD 82(W) M2(w) 4-"

0 -22 v2() 0(w

Coil located ,'
(4.6)

(Z11  =12 -KD KD 61(w) MI(,,) ... o 21

'=21 a22 0 -K0  82(W) M2(w) I'";

K% 0 1 0 V1() 0

K -Ks 0 022 V2(w) 0

where "".,

Ks -. , .s

These matrices were inverted by using the MACSYMA progranm and the ,-

results for the two cases are shown in Tables 4.1 and 4.2. The upper :_

left quadrant of each of the resultant matrices represents the * . p

measurable transfer function elements. From Table 4.1 it is observed .e,

'4-

(4.6)

a OL K K (W) (W). •4

~~-1 12 D- D- 1 1 ~ 3 ~.t.- *
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-- I % 1. 
l

' %*

that the the upper left quadrant is no longer symmetric and reciprocity

between the off diagonal elements is no longer maintained.
• 4.

If the system contains a non symmetrical transfer function matrix

an equivalent linear model of the system using mass stiffness and

damping matrices will have non symmetric matrices44. Such a system is

non self adjoint and orthogonality of the eigenvectors is not

maintained. The eigenvectors of such a system and the eigenvectors of

the transpose of the system are orthogonal to each other and form a 4--

biorthogonal set. In addition to making the system no longer self

adjoint, non collocation of sensors and actuators results in compounding

the control stability problems associated with the control of flexible

structures4 7  One example of the difficulties in designing an optimal

control regulator using a quadratic performance index with non

collocated sensors and drivers has been discussed by Cannon52. A

control law for a flexible robot manipulator arm with a tip position

sensor and a root torquer has been developed with the objective of

reducing the final position placement of the end of the arm.

Modal identification of a structural dynamic system with non.-

symmetrical matrices from the measurement of time histories of applied

forces and accelerations at selected locations requires a method to post

process experimental transfer function data and extract the biorthogonal

eigenvector parameters. VAN

Such a method has been developed by Potter53. The modal analysis

algorithms currently used to extract modal data from appropriate

transfer functions impose the assumption of symmetric system matrices
5 1

4.0
--

,.4, I
4'+'

----------------------------------'-' .A
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46Structures are rarely modelled as non self adjoint systems46 A --

popular approach to solving these type of problems is to expand the

unsymmetrical matrix into a symmetric and antisymmetric matrix. The use

50.of a non self adjoint analysis has been used by Hablani 50 . This J- -"F.
analysis yields uncoupled pairs of first order equations containing .

adjoint eigenvectors. *" "

The intent of the efforts here are to use the developments by -

Potter 53 and identify the modes of a non symmetric active system with

active feedback control from the measurement of the time histories of

the applied input and system response output. The following is a

slightly simplified theoretical presentation than that ,.. .

presented by Potter and serves to enhance the overall discussion of the -.

final results. .

4-1. Theoretical Development,-

The equivalent linear system is given by73

[M) {4i} + [C]s{4 i} + [Ks]{qi} = (Fi} (4.7)

where all the matrices are considered general real matrices.

By denoting

{y }  Zi}  - ....

[YLi
qij' (} .-

I.-. ..

. "" . "%'--" '-' . "'w".',-',.Z, C -',-" v " " :." " ".''.""," ." ; " "J ," , ," , • " " "" """#"
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the system equations are written as

[A](y i} + [B]{y i} : {zi}  (4.8)

where
[0] [MI S  -[MIS  [0]

[A] , [B] : (4.9)

L. MS[C)]_ L_ 01 C]

By assuming eq.

yi} = [Y} e

Eq. (4.8) becomes

[[B] + A[A]] (Y) = (0} (4.10)

for the no excitation case.

By solving

det 18 + AAI 0

2n complex roots and Xr (eigenvalue) a corresponding eigenvector are

deterimined. Therefore
[[B) + A [All(,r, f0} (4.11)

r

where

rr
r

r r 
+ 

1".

-9.. *.*%*. %.. -
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6.%

Since [B] and [A] are non symmetric it is shown 46 that eq. (4.11) can 0 %'

also be written as Ip[ ]]T p: 
.'

LEB] + A [A]] {r }  (0} (4.12)

Using eqs. (4.11) and (4.12) the biorthogonal relationships are

rpiT[A] ,r, = 0 (4.13)

{rP}T[B],,r, = 0

From the following external forces . V
{Zi(t)} = {Zi} e j~t  

(4.14)

and a solution of the form
{Zi(t)} = {Zi} ej m  

(4.15) :

and the additional assumption that either type of eigenvalue can provide

a solution of the form

2n

(YOJ = r ,r (4.16)
r=1

it can be shown that

2n r Tzi}[,r}
{Y.(t)} = (j (4.17)1. ~rr=

w i t h-
T

[r] [B][*] [A]

where [A] is the diagonal matrix of the eigenvalues, then

P

.,P. '_ '4%4' _4'a'.,~a.
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%"

2 -

r =  rWr + j  / I r

then

[r]T[A][,] [I]

By substituting for Y. and Z. in eq. (4.17)

jqi ) 2n (rr} T  f0) ; { ,r,

(3w - A) (4.18)

An expansion of eq. (4.18) yields .2n {r}T f}{r }  '5..*;

2 r I T {f. i
fqi} - (4.19) 'S%*._*.

rr1 r

For force input at k and displacement response at i2n  rr k , _

Hik = 2n r k (4.20)
ikr=1 jw-A. I

L.I r  
eq (420 become

If k : rki represents the residues at Ar eq. (4.20) becomes

n Ar  n r* NO

k ik 2ik ""

r1 jW+Wr-JWr r r=1 j+rWr+Jwr I &r

(4.21) .. ' -

In order to identify the eigenvectors and the adjoint eigenvectors,

it is necessary to identify Ar and Aik from the measured data in the

4'. .-Z

. +
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time domain. It is assumed that the following transfer function matrix

is determined from measurement of input and output time history at

selected locations

[H]J (4.22)

Hnl Hnn-- J'-

An expansion of the terms of eq. (4.22) yields ;1.*
AllAnA-A 1.A

A11  A11  Am In
+ + -. + +. in

[H]= (4.23)

A 1 An A 1  A n
n1 n1 nn nn

3 w-A1  3w-n 3j W-An n

In this equation, the complex conjugate terms have not been

retained and each residue is now replaced by its biorthogonal pair

Le1

1 1 n n nrl rn n
r11r1*1 r__

j X1J w- A 3 W A1Jw-An

[H]~ (4.24)
11 11 nln
r nX " " + r+ * n
jl 1 n n +w1  jwX n 

l n n nn -

-,
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or when separated into components
(2) -- ,

[H] :[H]( ) + CHI (2 ) + + CH] n .

For example

1 n 1
jw-A1  jW-A 1

[H] 1  (4.25)

1 n1

In terms of the residues, eq. (4.25) becomes - - '.. 4

1 A1
A11  1n

11) 1L 1n ][H] (4.26)3A-A . . . An
n1 nn

!i4 '.-'.

For each eigenvector the same result occurs
A1 /AA 2 /A2 n /A 1
11 n1 11ln1 11 n

=. .. (4.29)

To obtain the other eigenvectors, let

1 1 therefore A n: andnm

S  A1 /A1  1 A1
r [ 11" in A 12/ in 1

or

4 .
.

.4. -. .4
. . . . + . . # . . . • - - -. . . A + .J -

. . ... " . . . > e . , r p, . . . o # . O .# + r . ..% .. '. .. . e . ' + .' " d .&, , e e ..J, . #' . .
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r1  rA1 /A1  A1 /A1  1]
21 2n 22 2n of

'4,

For n modes then '430'
(4.0).

r 1 [AI /AI  Al /A1 1]
= 11/ in 12  in

. r2 A2 ,2 A2 12 i Z-
= 11/ in 12- 1n•,..

rn n n n n ]r [Al /An A12/An 1]2:-
11in 12 in

--.

With the relationships established in eqs. (4.29) and (4.30), the

biorthogonal eigenvector coefficients can be identified by normalizing

the row and columns respectably.

From eqs. (4.29) and (4.30) it can also be shown that obtaining a .

full set of residues experimentally is not necessary. Given the residues ".
'1°- "

of the lower triangle of the transfer function matrix for a given mode,

the upper half values can be computed from

4.°.

Ar =(Ar Ar ) /Ar (4.31)ik ii kk ki

or r r, .-

Ai. (A. /A m)/A Zj , m~i (4.32) .I3 it. rn m 91

and l,m cannot be such that an upper half value is chosen prematurely.

.-%. *°

. ,, 
°

- ,4-°-

- *a ~ '. 'a-.a- ,.-. v e' '- _ ' . ." ' "% ' , r L--' w. , _ '
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4.2 Experimental Results

A cantilever beam shown in Figure 4.2 represents a structure with a

single pair of collocated sensor and actuator and a single pair of non

collocated sensor and actuator. The feedback signal is conditioned to

correspond to the second mode frequency.

The transfer function data taken at the two reciprocal locations

noted on Figure 4.2 with feedback control are shown in Figure 4.3. From

this data the difference between the transfer function is very slight.

To avoid any shift in second mode frequency from a repositioning of the

accelerometer, small masses were used. Results for the beam subjected

to low gain control using a collocated sensor and actuator are shown in

Figure 4.4. The difference between the two transfer functions was more

than expected indicating that factors such as transducer misalignment

and incomplete bonding may be present. Figure 4.5 is the transfer

function data for the non collocated control case shown in figure 4.2

at the same gain level. The greater reduction in the second mode

response at the same gain is because the actuator is now twice the size.

Nevertheless the difference between the transfer function results is

greater.

To obtain a numerical estimate of the difference between reciprocal

transfer functions (Hij, Hij) The difference between the real and

imaginary components was defined as

e = IHi(w) - Hji(W)I (4.33)

or

e Ixij(W) - xji(W) + J(YijW) yji(W))I (4.34)

4.%

-1,

-''- ''-.' . ."" -""..''*- ." - ." " . * - - .. . .."" '" "- ' "". . . ." -2," " - < " . '" . '. " " ' . , "
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where x.i - and yij are the real and imgainary part of Hi.

Therefore the normalized difference is

e e

1 (4.35)

AE NC

where A& is the sum of the difference results for the no control case.

The results are listed in Table 4.3. The numerical results support

the above observations. .. I,

Shown in Figure 4.6 is another beam with the feedback filter J!

centered at the second bending mode frequency using a single sensor and

single actuator. Also shown in the figure are the transfer functions

measurement locations necessary to obtain the lower triangle of the 4

transfer function matrix. Using the residues computed from these

transfer functions the residues for the remaining elements of the full

transfer function matrix have been computed by using a post processor.

The post processor consists of expanding eq.(4.31)as follows: -J ,

For each mode r,

+ + r . r %, -

A + 1 ( kk kk) (4.36) N -Ir .r r
ik (Uki + jVki)

where U.. is the real part and V.. is the imaginary part. Expanding eq.

."b.
.. for aode

.- 42
"-3:--

,*i"-0 ' . ' ', " , "
", " " "

i "
" " x ," ,, , w ' " 

"
" " ' '" _, ,- ', ,".". J ., ., ,,-"'' -.- ,"-, .,'.,,io'
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Table 4-3 Numerical Difference Computation of Collocated
and Non Collocated Feedback

Experiment Error

No Feedback 1.0

Collocated 1.42

Non Collocated 2.10

Note: 60 data aamples (360 -390 Hz.) JS A
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UiiU kkUki + VkiViiUkk + VkiUiiVkk - VVU
Re(Aik) = U2  + 2ii kk ki (4.37) ;

ki +ki

= ViiUkkUki + UiiVkkUki + UiiUkkVki + V iiVkkVki (4.38)
m(id ) =  2 + 2(43)- I

u i +  v i..o

The same post processor computed and normalized the left and right

eigenvectors according to eqs. (4.29) and (4.30) with and without

feedback. The coefficients of the second left and right eigenvectors

were used to compute a variance given as

n n
*ij rji (4.39)

1 j=

to provide a relative measure of the degree of biorthogonality for the

different cases. If the eigenvectors are orthogonal, then E will be
very small. For example, a four degree of freedom finite element model

of the beam with no control gave a E of .206x10E-3. Experimental

results when no control is applied yielded a value of .124. This

number can be considered an equivalent measure of the noise of the

experimental measurement as well as the residue estimation and

eigenvector coefficient identification. For the case of non collocated

control, the experimental results were

. . .....

. -'
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.648 .694

2 .513 2 T = .427

.800 -.762

1.0 1.00

with a computed c of .472.

Though preliminary in nature these results demonstrate the

modification of the active structure's modal behavior.

V
I'If

S. .. "-

°U."

.'. .

7 .* .%
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CHAPTER V

GAIN OPTIMIZATION OF THE ACTIVE STRUCTURE-

In this chapter, an application of optimal control theory for

active damping of the structural dynamic system consisting of multiple

collocated piezoceramic sensors and actuators is discussed. The

control objective is to bring the active structure form a perturbed

initial state to the origin in an optimal fashion.

5.1. Background

To apply the concepts of optimal control to the active structure

a brief review is presented of a method of obtaining optimal feedback ,

gains of a system described in state space with full state and limited "

state output feedback applied. A detail description of this method

for full state feedback is provided for a in a variety of texts on

modern control theory 54,58,61,78

Consider a constant coefficient system defined as

i(t) Ax(t) + Bu(t) (5.1)

with

X(t0) X0  (5.2)

'7..-p -

4o. 
-

"-°

4. . 4. 4. 4.4.-. 4. .4-...
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where to0 is the initial time. To optimize the control of such a

system, a quadratic performance can be written a78

t 
.f, 

T.T

0

., '%,.

where Q is an arbitrary positive semidefinite matrix and R is an

arbitrary positive definite matrix.

Let the functional L be defined as

tf ..o ON
~xx~, 2 1 T T T.

L(x,x,u) = Qx + u Ru) + A (-x + Ax + Bu)]dt (5.4)

0 . .'

where A is a vector of lagrange multipliers. Equation (5.4) can be

rewritten as
.,..W%

1 f T

Llx,,u) = (H(x,u) - A x)dt (5.5)

ft/

where

i~Tx + T + TH(xu) 2 Qx + uTRu + A (Ax + Bu)]. (5.6)

Setting the first variation of L to zero yields

aL aL L 

- -6L 0 = - 6x + + 2 6u (5.7)ax a x au

. ." -

5-. .. . . .- . * 9. . .. 2 . .\ 2. .9.... .. ~. .- "...- -%
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Using Equations (5.5), (5.6) and (5.7) gives

t

SLax auT 6u x~)dt-0.(58

0

Integrating the second part of Equation (5.8) by parts yields
%.ww

% 
...

tfTa T t f _A k A x 6x dt (5.9) .

to to ft0  ..., 
0

The first term is zero if 6x(t o) 0 and X(tf) is chosen to be zero.

Combining Equations (5.8) and (5.9) yields

tf
( 1H + T) a + aHu6L = ++ )6u] dt 0. (5.10)

,- ..- ,1"

Equation (5.10) can be simplified when A(t) is chosen such that

aH _T X(tf) 0 (5.11)
X0

Then

." .."* -,

6L= H 6u dt
, *.. ::-:::

For arbitrary 6u we are led to the necessary condition.

"a- % %
-H 0. (5.12)

au

..: .-' .,:
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Using Equations (5.6), equation (5.11) and (5.12) become ,

= -Qx - A x (5.13)

u - RIBTx (5.14)

Equations (5.1), (5.2), (5.13) and (5.14) are the necessary

conditions for optimality.

Selecting a solution in the form

x(t ) = P(t ) x (t). (5.15)

Then differentiating equation (5.15) and substituting the results

in equation (5.13) along with Equation (5.1) and (5.14) yields the

Ricatti equation

-PA + PBRIBTP - Q - AP, P(t f) 0 (5.16)

follows from the choice of X(tf) 0.

It can be shown that P(ttf), t<tf, is stable backwards in time.

Therefore,

lim A(t,tf) P(t) = 0 (5.17)
"4~.'.-

With Equation (5.17), equation (5.16) becomes the algebraic Ricatti

equation for full state feedback.

T -1 T
PA + A P - PBR B P + Q =0 (5.18)

", *,"%

r,:"#'.
o* b .

I-,.

As S 4 .~* %. '~c*~v'. . ,.. **-.,* -
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The corresponding optimal control in state feedback form is--

u -R IBTpx (5.19)

where P is the positive definite solution of equation (5.18).

Uniqueness is guaranteed if the pair (A,B) is controllable, are closed

loop stability is guaranteed if the pair (A,C) is observable, where C

T
is any matrix such that Q --C C.

5.2 Optimal Output Feedback

Now consider the situation where perhaps all of the state cannot

be measured and the control vector is proportional to the output

vector. Such a system can be defined as
r v,, 4

Ax + Bu x E Rn (5.20) .. N

y Cx y E R m (5.21)

u = -Gy (5.22)

where matrices A,B,C and G are constant coefficient matrices and the

initial state is unknown, but assumed to have zero mean with a

- variance

E{xoxT X (5.23)

Optimization of such a problem has been formulated by Levine and

Athans 59 and later by Mendel. An algorithm has also been developed

by Moerder and Calise 6 3 to solve the problem with an objective

S..-

e, . . . " " f " . • . + . . . - + .. .. . .+ ++ to. ,. . 11 1 .. . . +. . + .-. 1-I w"i~l+- • ." 4-
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function defined as

.,., -;

E f(xTQx + UT(5.24)J E xT Ru) dt + y(G)

where y(G) allows for a penalty to be placed on certain element of the

gain matrix. Using Equations(5.12)and(5.221 equation(5.20)becomes

[A - BGC]x (5.25)

whose solution can be of the form

x(t) [exp(A - BGC)t]x 0  (5.26)

Let

0(tO) = exp(A - BGC)t (5.27)

equation (5.24) becomes

J : E xoTKx o  -y(G) (5.28)

where

K = (Q + LuG dt (5.29)
0

when Equations (5.27) and (5.22) are substituted into Equation (5.24).

Furthermore equation (5.28) can be written as63

J tr(K XO ) + y(G) (5.30)

-4,.....-,._.,

4,-'_
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. .b d

where tr denotes the trace of the matrix and the matrix K satisfies.

T T T,
(A - BGc)TK + K(A - BGC) + Q - cT GRGc 0 (5.31)

To obtain the optimal feedback gain matrix a lagrangian is defined in

reference 60 as

L(G,K,X) y(G) + trKXo - tr[(A - BGC)TK (5.32)

+ K(A - BGC) + Q - CTGTRGC]T.

Taking the partial derivative of the lagrangian with respect to each

variable yields

-BTKAcT + RGCXCT + G(G) =0 (5.33)

TI
(A BGC)A + X(A - BGC)T 0 (5.34)

(A- BGC) TK + K(A - BGC) + Q - c GTRGC 0 (5.35) -

where YG(G) is the gradient of y(G).

This result obtained by Moerder and Calise was solved using a

sequential numerical algorithm. The algorithm has the added feature

that certain elements in the gain matrix can be penalized to reduce

their influence on the system. This feature is of particular

importance in the active control of structures represented by finite

elements. In the next section, the optimal gains are determined using

this algorithm for a simple structural system subjected to active rate

feedback control using piezoceramic sensors and actuators.
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5.3 Rate Feedback Model

The active structure shown in figure 5.1 consists of two

collocated pairs of piezoceramic sensors and actuators. The output

from each sensor was only multiplied by a gain and applied to its

corresponding actuator.

The following assumptions are made for this analysis:

a) The closed loop system is stabilizable by output feedback.

b) The piezoceramic sensors and actuators do not contribute mass

or stiffness to the structure.

c) The piezoceramic actuators have no internal dynamic

characteristics (actuator dynamics).

The governing equations of the active system were transformed

into the limited state feedback equations (5.20) to (5.22). The

structural was modelled as .

*E 01 F F
11

[M] * [ + [K] (5.36)

*4i 5sj t

,, where the translation d.o.f.'s have been eliminated by a condensation '. '

procedure and the vector [Mi1 represents only active feedback control ____

moments. When control network #1 and #2 of figure 5.1 condition the

sensor signal in a rate feedback manner for only first two modes, the

output voltage to the actuator is

.

44
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VI g11 01 -Ks Ks  0 0 0 (5.37)

V 0 L 0 -K K 0]"0

where K represents the sensor piezoceramic and dynamic coupling
" " 1

coefficients. The control moment vector for the actuators becomes -,'-

T -

-K K 0 V 
{Mi} = (5.38)

0A 0 -K Kv 2 0. y• . °.. *" _-D  KD  V2]

Combining Equations (5.37) and (5.38) yields

Mi} = [KD [G] [Ks] {(i}  (5.39) .

Substituting Equation (5.39) into (5.36) and multiplying both sides by

the inverse of the mass matrix yields

[oi l -['I- [c] Oil - [I.J 1 [K]{i} + EM]I'[KDI[G][KD] } Oil

(5.40)

Let the following state variables be defined as

T
{x) =(...xlO} =0].. .05 6. (5.41) - -

Equation (5.40) can now be rewritten in state space form as

.1..7P]

S1 (xi} + [B] [u) (5.42)-. } = .[M]-I[K] -[]c .- *'
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where

EIO] 1-'
[B : EM])' [KD] :

[B] J
and

% %.

If %,.,,

[0] [K] {ixi} (5.43)
Y2

u Y 'i-.
-[G] (5.44)

UPD

u2 Y2

The mass, stiffness and damping coefficients have been obtained

from the identified model of the selected beam (Model #1), shown inl..'

figure 5.1. The sensor/actuator coefficients were from previous

presented results. Perfect dynamic coupling has been assumed and

Table 5.1 lists the values of the matrices A,B and C.

Optimization Results

The procedure for using the algorithm is as follows:

a) The numerical values for the A,B,C,Q and R matrices provided

as input data to the program.

b) The program requests initial gain matrix and penalty values.

c) The program computes the open loop eigenvalues which provide a

check on the input data.

d) If no initial gain matrix is given the program estimates one. ,it

% ~ \ d .. . * \ . . . . * . * ** * % . .. . .- . . . . . . . ... . . . • .* * '%" ",i



114

Table 5.1 Numerical Values for Rate Control Analysis

Model #1.

0. r

0.0 0.0 0.0 0.0 0.0 0

[A] 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0
-2.334E.07 3.465E+07 -1.938E+07 2.734E+06 1.097E.06
5.653E+07 -1.204E+08 1.180=E08 -4.236E+07 -4.915E+06

-3.016E 07 1.190E08 -2.429E'+08 1.656E+08 -1.290E+07
" -4.608E+06 -1.090E+07 1.425E+08 -1.799E+08 5.264E2.07

6.401D+06 -6.459E+06 -9.703E07 1.772E+08 -7.933E+07
1 0 0 ". 0.

1.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0

-. 0.0 0.0 0.0 0.0 1.0

-2.442E*01 1.405E01 1.241 -8.169 -1.856
2.422E-01 -4.7552+01 1.919E+01 -1.528 2.264
5.013 2.173E+01 -6.656E.01 3.201E.01 4.129 -
3.169 4.390 2.619E.01 -5.146E+01 1.349E+01

-5.384 7.757 -2.545 3.750E+01 -4.332E+01

.0.0 0.0 ".
0.0 0.0
0.0 0.0
0.0 0.0

(B] U 0.0 0.0
-1.503E.03 -3.937E+03

7.544E+03 2.087E04
-1.475E.04 -4.326E*04

1.006E.04 3.1302.04

-8.576E+04 -2.738E.04 U- .

(C] 0.0 0.0 0.0 0.0 0.0 -4.074E.02 4.074E.02
0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0
-4.074E+02 4. 074E+02]

4%

-4,....

..

% 4424.a
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e) The iteration procedure begins and the attempts to obtain an

optimal solution.

f) After a particular solution is obtained, interactive analysis

is possible.

Using previously identified structural and sensor/actuator

coefficients gave the following open loop natural frequencies and

damping values

Rad/sec Damping

367.9 .0090

2329.8 .0039

6534.5 .0039

12918.1 .0023

20752.1 .0023

The R matrix was an identity matrix and the Q matrix was defined as

S,i

000 0 1 11%p
0 0

0 11

penalizing all the angular velocities equally and giving no penalty to

the angular displacements. With a null initial gain matrix the

resultant optimal gain matrix is

,

~.'.",-

'. %*..

..,,:.w":f e '':," , ' ','-'.-,3,", -',",",.-.".,"*.'',' ""." .'..'.,.'-.'-.'.,',-..,.;.,v -, .'..'.. ,. .,',,.'..,,,.'.-'.y -,''. .'_, , -.-.",'C. Z'-"- ..*" ."-
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Gain Matrix

2.419D-03 -2.570D-04

-2.290D-04 1.515D-03

with a performance index of .900D+06 and natural frequencies and

damping values of

Rad/sec Damping Increase over

Open Loop %

367.0 .0090 0 -

2330.0 .0046 18

6535.6 .0089 228

12916.5 .0276 1200

split over damped

When the Q matrix was an identity matrix almost identical gain .\.-P

and eigenvalue results were obtained. The optimal gain distribution

increased the damping of the higher modes compared to the lower modes.

This was expected since the contribution to the objective function by

the higher modes is greater because for velocity, each displacement

variable modal contribution is multiplied by its corresponding

resonant frequency. When the off diagonal terms of the gain matrix are

penalized in y(G), the resulting optimal gain obtained was

, - .. . . . . . . . . ... %. .. ..-

-%A V'

N.%**

b6p..
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Gain Matrix

2.500D-03 -2. 530D-07

-7.600D-07 1.740D-03

with a slightly higher performance index of .9013D+06 with the

following resultant natural frequencies and damping values.

Rad/sec Damping

367.9 .0091

2330.2 .0047

6535.6 .0085

12917.7 .0268

split over damped

These results did not differ much from the results obtained from not

penalizing the off diagonal gain terms in the gain matrix.

To show the effect of the optimal gain distribution, the state

equations Equations (5.20-5.22) were solved using a Runge Kutta

technique for the open and closed loop control configurations. The

system angular rate state variables were given a unit angular rate . *..

initial condition and the time histories of system response obtained.

The output response yl(t) in volts from the sensor in control

loop #1 of the baseline no control configuration for 50 msec is

shown in Figure 5.2. The response signal content contains the

contributions of the five modes of the structure with their respective
-'5 ..

": -'@'," . -" " " S \ - .%" " W" .- . ' .. '-. • - a- j- • • . ~q %°. , .. . ...... . . . . "
" °



118

Inn

U)

-4

Lc;

En %

CAI

(Z LLT) Lrc-fl 10



119 %*

damping values. When active rate control is initiated for the same

set of initial conditions, the control voltage to the actuator uI is

shown in Figure 5.3. Comparison of Figures 5.3 to 5.4 demonstrates

that the control signal is the exact inverse of the sensor signal and

scaled appropriately.

Since the optimal gain distribution shown previously increases

the damping of the higher modes for the system, the predominant signal

response due to the first two modes does not change. In Figure 5.5

the baseline and active control output signals from control loop #1

for the first 20 msec are superimposed. The observed smoothing of the

output signal during active control is due to the increase in the

damping of the higher modes.

The active structure (Model #2) shown in Figure 5.6 was also '-

analyzed using the limited state feedback approach. As before the

output voltage is

fvi 7 11  0sfiV1 = 11 0 Ks  0 61f (5.45) "'.,""

V0-K Ks . .

and the contiol moment vector -a.

D .K D  Vl -.- ..

-Kn Vi
M t D  D (5.46)

ext L0

The system equation retaining only the rotational degrees of

.. . . . *. .... .. . . .. . . *a'""
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freedom is

-[M]'I c] - [M]'I[K]o i} + [MlI[KDJ[G][Ks]6i() (5.47)

and the state variable chosen were

Ox}T I 2 19 2}. (5.48)

Equations (5.45) to (5.48) are rewritten in a state space form

and the optimal gain matrix with off diagonal element penalized is

7 6.957 D-03 1.697 D-04
G=

2.239D-05 5.778 D-03

when the Q matrix is defined asI
0 I

10

and matrices A, B and C are given in Table 5.2.

The resultant system baseline and changes in modal damping values

are

Damping Damping at
Rad/sec Baseline Optimal Gain

r 448. .0015 .005

4284. .002 .033

Figures 5.7 through 5.10 indicate the first mode and the second

mode response attenuation. The results were similar to model #1.

-V. -
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Table 5.2 Numerical Values for Rate Control Analysis
Model #2.

0.0 0.0 1.0 0.0
[A] 0.0 0.0 1.0 0.0

-4.420E+06 3.453E+06 -5.014 3.003 1
1703E 07 -1414E07 l.4a1E Ol -I.347E OI1J

0.0 0.0
CBJ 0.0 0.0

5.370 -2.143E 01

-1.606E-01 8.774E+01

EC [0.0 0.0 4.074E+02 0.0
0.0 0.0 -4.074E+02 -4.074E+02] ."".

N...

. . F

".0

i,.

.%
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CHAPTER VI

OPTIMAL CONTROL USING DISTRIBUTED SENSORS AND ACTUATORS

In a recently reported work Bailey and Hubbard have developed

an optimal control algorithm for a system consisting of a cantilever

beam with a point sensor and a distributed actuator. The actuator was

a unimorph piezoelectric transducer made out of polyvinylidene ,,*-S

fluoride polymer (PVF) and covered the entire upper surface of the

beam.

The objective of this chapter is to extend the work of Bailey and

Hubbard 15  to explore control strategies by using distributed

piezoceramic unimorph transducers as both sensors and actuators.

6.1. Analysis

The structure shown in Figure 6.1 , consists of a cantilever

beam of length L, with constants E,I and p. Subdomains of the beam

are covered by pairs of bonded collocated piezoceramic unimorph

transducers polarized in the z direction. The transducer on the upper

surface is used as a sensor. When conditioned by a zero impedance

amplifier it was shown in chapter II, eq.(2.22) that the output

voltage for a constant width sensor is I',

x .

V K (xt) dx x < x< X (6.1)Vs = 2Ks

x.ax2  -,x5,**

X- i., *.."
.,--. ::
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where K represents the sensor coefficient. The transducer on the

lower surface is used as an actuator. As shown in chapter II, eq.

(2.43) the moment induced by the actuator at any point within its

domain is

r. we.. r

M(x,t) : El w (x,t) - KDV(t) xi < x < x. (6.2)
ax2  D ...xi < x.<

where as before KD represents the actuator material and dynamic

coupling coefficients and VD (t) is the applied voltage to the

transducer electrodes. When the sensor output is amplified and applied

to the actuator without any filtering (rate feedback) VD(t) is

VD(t) G Vs(t) (6.3)

where G represents the gain.

From eqs. (6.1), (6.2) and (6.3) the applied control moment

becomes for x.<x<x.

M(x,t) = El a2w (xt) -K GKws l @x (6.4)
Aax2  ax T ax =X (6.4

As previously discussed in Chapter II, the distributed piezoceramic

actuators can be modelled as external point couples applied at the

ends of the domain xi, xj. Using the conventional Bernoulli-Euler
,. %'

beam analysis and assuming that the transducers add neither mass or .:.-

stiffness to the beam the governing differential equation for the

portion of the beam with the collocated transducers is
-w =

,.'.
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2 2 2~a aw (x,t) _ w+ w[ _GL + pA- 2  0 '
22W "DG s ax = X ax .t 2 .

XX 2  aXx =x at

w . •(6.5)

for xi<x<xj.

As noted in Chapter II, the sensor output is approximated by the

difference of the angular velocities at the transducer ends, and is

not a function of x. Therefore in eq. 16.5), the second spatial __

derivative makes this contribution vanish within the domain xi<x<x-.

Nevertheless, the control moments are present in the moment

equilibrium equations at the transducers's boundaries (ie.,x xi and x

= x.).

Let the domain of the beam be subdivided into three subdomains

defined as follows.

W: 0 < X < xi

w2 : xi< x < x

: ~ ~~~w3 : x.<x < L.,.'".

,, ',*:,. .'.

The governing differential equation and boundary conditions for each

subdomain are as follows

a4wI  
2wI

EI +pA =0 O<xx.
ax4  at 2

(6.6) " "

-5w

at x =0 w 0.l 1ax

at x = xi, w1 = 2

- .'• .,. - *°** * - 5- -. *
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aw1 _ aw2
8x Ox

: W2 L - (x 1 t)_ 2 (xi t)
2 ax2  x ax

ax3  ax3 .--

and.

+ A 0 x xx

442

w ww

lax4  ax2  .... ,x.

1....-2

at x :x , w2 = w3  5

aw2  aw3 3(6.7)

ax ax

5',.5:.:!

a2 w2  aw

E2 4 + 2 (xj t)_ 2 (xi t)
2  x 2  ax ax

a t xw2  w '';

ax2 ax ,x(6.7

3 3i

a 2  E a aw
(x2t 23x.t

a5'3 3

and

4w 3
El - + pA 0 x.<x<L (6.8)

ax4  at2

N % . - N . .. % % *%~ * *5' * .*** 5 . . . . . . . . . . . . . . ~ . *. N . - .

-.* * *.. a . ' • . . .. . -. - .... . . . . ., - "." a., '. "• "* -%.,..*.-. ' % % " ""'"""%"""% . ."% . % . % ."" ,.% . " " " .% % . .,'. % " . " " . " . " % . "
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2
w w3

,at x:L -02
a3w3

3 :03

ax

where

o (KDGK s)/EI

Equations (6.6) through (6.8) represent the governing

differential equation and appropriate boundary conditions for the

k' structure in figure 6.1.

4Equivalent Formulation

The problem of the active beam with piezoceramic sensors and

actuators can also be formulated as follows.

n n
2 a2  a2w
xa (EI ) + pA t S(x-xi)Mi(t) + 6(x-xj)M(t) (6.9)

where Mi(t), M (t) are the externally applied points control moments ___

due to the piezoceramic actuators. From eqs. (6.2) and (6.4) these

point moments are applied at the transducer boundaries as

M. = KDs aaw w
-D -s x Ix=xj T x=x i

4.x
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= -K GK, ,Mj "DGs 83' x=xj ax jx=x i  ."_D

Then the expression for the bending moment at any point in the beam is

M(x,t) =I El-- (6.10)
ax

with the following boundary conditions

x= 0  w=O

aw -

2
8w..

at x =L a w" 0

ax

3~

",-a w =0 f

~~~~ax 3  _ -

and the strain energy of any point of the beam is

&2
IULE { ~ j - dx (6.11) .
= . ax -'.

0 "

The resultant effects of the piezoceramic actuators are treated as

externally applied moments.

6.2. Distributed Parameter Control

To derive a control algorithm for the system, Lyapunov's second J% '
61

method61 was used. This method is based on the principle that if a
.ys -. e

system has an asymptotically stable equilibrium state, the stored energy '4.

, 4.%

..-4 ..
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within system when displaced decays with increasing time until it

assumes a minimum value. A direct relationship can also be shown

between Lyapunov's second method and the generalized quadratic

performance indices used in designing optimal control systems 5 .

A functional is chosen which is the sum of the strain and kinetic

70
energies of the free response motion of the beam -

2a w )2"- -
Fl 2 + pA - ]dx (6.12)

2 ~ ax2) 1%a}.... .'

*44-.' ,0

and for the system described yields,

2W

f [ aw 2

2 f-

axX

L 2
+ [rEI(- 3.f + pA(-- dx

2Jf ax atl
x.

Using this functional, the objective will be to bring the system to ..-

equilibrium from a disturbed state in a minimum amount of time.

Alternately, as discussed by Komkov the objective will be to

obtain a control actuating force which in this case is a control

couple pair that has the characteristic of decreasing the total energy

at a maximum rate for each time interval under consideration. Such a

.'I. ..l
.4. . 4 . .4- l"%" .- - . .- ,- -. 4... -'-%.,--- .-..- :.... .%... % * % **%.-v ,, -%* %;%* %" -

- .4- .. 4- A. A. 4-, 4--. '4- ."4. 4- 4.- . '. _ '.,1. €. : _ ' - - '-W= _ ' =_ _...__-
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control couple would be labeled "instantly optimal" by Komkov.

Therefore, maximization

of a t1 is what is required.

*: The first derivative of eq. (6.13) is
A.:

& F x i 2 ) 3w 2 w
- r xEI( 2x r 2 1 3w 3w (6.14)

at xi ax2 j  ax at at at2

x. 2 3 2
L wax2B axat awt at2

X.1

2 3 2

a. ax at ~at ' at'
X

Substituting eqs. (6.6), (6.8), and (6.10) into (6.14) yields

_F_ EI_ w 1w ])x (6.15)
at aX x2 at a' t ax

-09

+___aw) w w2 d

x 2a2 at ax 4 1 .-MV

• A.

I P, ~ * . I A . . . * ~ * . - * * o,.



% %

138

+ f 33 w3  !4w3  .4_

x -x 2 ~ ax at at ax

-, Integrating the second part of each integral twice yields

B x. 2 w a3 w awl a3w I  
xi

aF 'l ( ax2  a 2at ax3  0

a 
.w J.

+ 2Wa wl aw xifxi aWiS3Wl J]
axat 2f22ax 0 0 ax a a

X. L .

+ EI x. . x -x x

Lxi I x
i. *

The integral in the brackets cancel yielding *.

aw aw3 i a2ww 1x.
at at) a E ax3  -a2

L0

aw aw X

i o ~ ...-.. S

", -C C x x-,"..:_,.-
',4.,

- .

".*4.

4...:
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2 2 xj a3  L

2__(a3 '

+Ir- + txa
t) (616

2 J at 3ia-j a axax 2

+Equ at 6) can befrhr5ipiiecsn)tem n

F 2wt a2  +x~t a2 wi2(xjt) a2~jxt

2I 2 w3(l~) w(xtt

~a w 2xit) a2w 2(xit) a2- (x3 2 D 3 Xit
atax x2  JCatax ax4

ax axJ

2 2 2- 2-

+~ ~ waw (Xt a W(x ,t) wa~, ( t) 2 (xt )

~atax J~.ax 2 XKa-a ax2

W-91

*~ 2% 2' 2- (X l
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Finally using the following boundary conditions at

Ox x "
awl aw2
~ax 7

2 2

axat axat

and at

x = Xj

ax ax

2 2
" 2  "W3

a x-t axat

Equation (6.17) reduces to

- KDGKs[6(x.,t) - i(xi t)]2  (6.18)
at D

where

S
2w
axat

Equation 6.18 represents the time derivative of F given the

feedback voltage as

Vot)D-- GKs[i(xj~t) - B(xi,t)] (6.19)
D.4-

-U
S.:T-
S', .-..-.-U, . . .. ,.-, .-. , .",-?"-. ..- : . ..-, ' " "-' ... '.' ' -L-..." .','°',.-."/, , " .', ,,,
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where the difference in the angular velocity between the two nodes can

either be negative or positive. For negative feedback the gain value G

is set negative and eq. (6.19) is now equal to I4

. VD(t) = -GKs[6(x 't) - 6(xit)] (6.20)

To maximize - (aF/at) the control moments at x. and x. can be such

that a maximum value is always applied opposite to the motion. This

is done by setting VD(t) to -

VD(t) -GK sgn[6(x.,t) - 6(xi,t)] (6.21)

where the sgn( ) is either +1 or -1 depending on the sign of the

difference in the brackets. Eq. (6.21) will be referred to as

Lyapunov control and when eq. (6.20) is used it will be referred to as

'4 rate control.

This result is similar to the one obtain in reference 15, however

there is no need to approximate the control law by using a linear

velocity measurement as was done in reference 15 since it is directly

measured by the piezoceramic sensor. Secondly, the derivation has been

extended to sensors and actuators occupying a subdomain of the beam

rather than the complete region.

6.3 Finite Difference Evaluation

To evaluate the performance the optimal control laws discussed in

the previous section an explicit numerical finite difference
55technique was used. Consider the structure shown in Figure 6.2,

consisting of a distributed piezoceramic sensor on top and an actuator.. *.

on the bottom. It is assumed that the transducers add neither mass

nor stiffness to the structure.

The following analysis consists of two parts: open loop which

e o .considers only the beamwith no active control and closed loop control.
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In the open loop control the beam is given an initial velocity

distribution and only internal viscous damping of the beam is

modelled. In the closed loop control, active control is applied to

the structure given initial velocity conditions. The output from the

sensor is amplified and used to excite the actuator. Two approaches

for modelling closed loop control have been examined.

Open Loop Model - No Active Control

The dynamic behavior of the elastic structure without active

control is modelled as

-F

at v (6.22)

2av c 1 aM (+- - (6.23)
ax

tMEl a2v (6.24)

where w is the displacement, v is the velocity, M the moment and c is

the viscous damping coefficient. The boundary conditions for the

cantilever beam are

w(O,t) = o a2w (L,t) 0

ax
2

aww (O~tt)aw = , aw (L,t) 0
ax ax3

a'

The beam has been discretized as shown in figure (6.2) for the

development of the finite difference equations. The nodes NX +1 and

...- .
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NX +2 are additional fictitious nodes necessary for computing the

shear and moment boundary conditions at the end of the beam. "'.-

Finite differencing approximation of eqs. (6.22) to (6.24) are

for node 1=2 to NX considering the n+1 and n time step

(wn+l(1) - wn(1))/At v (1) (6.25)

v n+1W Vn (I) + vn (I)= - M n (I+1) 2M n(1) + Mn(I-I)] "?
At m m LAx 2

".-% w

(6.26)

n+1 n
Mn(1) - M nI El Fn+l(1+1) _ 2 vn+l(1) + vn+1(il)..

At ax2  L..

(6.27)

For node 1 the following finite difference equation are applied

Sn+(1) =0 ;: -

n
w(1) 0

n+1w (1) 0
vn(l) = 0".'-

vn+l (1) = 0..

(6.28)

Mn(1) Ewn(2)
AX

n+1(, 21 El n+l
M(1) 2 (2)

Ax

To compute the moments from eq. (6.27) requires that the velocity

of the additional fictitious points be known from the boundary
caT n'. .a s

conditions at x=L (node NX). The finite difference equations can be.:''

'S" • h'

. ", ." . • ° • - . * • % . * ,. . . .~ " . . * . - -' " . . . -° # , ' . . , * -. * * ". - " . . ... * ,," * - *" '%" %- . ,, . " %
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written as 
WO

n+l 2 n-iw 'l '~
w (NX+1) - 2w (NX) + w (NX-1 ) = 0 (6.29)

n+1 _M+M (NX+) - (NX) = 0 (6.30)

Equation (6.30) can be expanded in terms of displacements and

combined with (6.29) to form the matrix eq.

w  (NX +2 )  = 3 w (NX) (6.31) "

n+l (Nx+) -1 wn+l(NX-1) **5,.

Solving for the displacement of the two fictitious points yields

n+1 n+l1X n+1w (NX+1) 2w (NX) w (NX - 1) (6.32)

n+1 wn+1nw (NX+2) = 3wn+l(NX) 2w (NX+1) (6.33)

The velocity at NX +1 can now be determined from

v n+1 (NX+1) 1/At(wn+l(NX+1) - wn (NX+1)) (6.34)

From eq. (6.26) the velocity for the n + 1 time step is
vn+1(1) = vn(1) _ Atc vn(1) At [Mn(i+l1)2Mn(1) + Mn(il)]

(6.35)

and the moment from eq. (6.27)

M (n+(i) Mn(1) + I [vn+1(i+l) _ 2vn+l() + v n+(i-1)] (6.36)

The displacement can be computed for the n+1 time step from eq.

(6.25)

wn+l() =wn(1) + At vn(1) (6.37)
J...". 

.-

41
A".Z Z-f

?.-,,
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Finally, the following shear boundary condition is used to

compute the velocity at the n + 1 time step for the NX node

n+1n1
M (NX+1) = Mn+l(NX-1) (6.38)

To obtain only the first mode response of the beam the following

velocity initial condition was chosen for the structure.

For node 1

vn(1) :0 (6.39)

and for nodes 2 to NX

• ".

vn(1)=AR[(.36705)[sin 1x-sinh- x]-(.5)[cosp x coshl 1X] (6.40)

where AR is the desired maximum velocity at node NX (tip) and 01=1.8751

for a cantilever beam of length one for the first mode. Given this

velocity distribution the beam response contained only the first mode

contribution.

The computation sequence was as follows:

a) Initial conditions eqs. (6.39) and (6.40) are solved for

time step 1 for nodes I= 1 to NX

b) For I=2,NX velocity form eq. (6.35) and the displacement

from eq. (6.37) are computed. Note, the moment for I= 1 to

NX +1 is zero for the initial time step.

c) The displacement for the fictitious nodes and are computed

from eqs. (6.32) and (6.33).

d) For nodes I = 2,NX the moment for time step n + 1 is obtained

from eq. (6.36)

I -:

*'.
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e) The next time step is incremented and the procedure steps

(b) to (e) are repeated.

Closed Loop Analysis

Two finite difference approximations have been examined to model

the closed loop feedback response of the system under free vibration

with a first mode velocity initial condition (eq. 6.39 and 6.40). For

each approach, two different control laws eqs. (6.19) and (6.21) have

been evaluated. The sensor output was described previously as

x.

Vs(t) = K x(6.41)

where V (t) is the output voltage of the sensor and K is the sensor

c n

coupling coefficients.

First the sensor is assumed to cover a portion of a beam and is

discretized as shown in figure 6.3. The sensor output is proportional

to the difference in the angular velocity at its end points provided . -.,

no nodal lines exist within its domain of the modal frequency of

interest. The voltage output of-the sensor can be approximated in a

finite difference manner as

[ n+1 v +I n  -1 vn 1 .. ...

Vn+l(q) tv (q+l) - v (q-1)] tvn p(p+l) - v (p-1)]
s 2Ax 2Ax

(6.42)

where p and q are the beginning and end nodes of the sensor. When the

sensor covers the entire surface of the cantilever beam the following

additional condition is necessary at the node p 1

"-,.'.
5' ,
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n+1 n+1
v (p+1) - (p-I) 0 (6.43)

The first method of solution (approach #1) for the active

structure covered entirely by a piezoceramic sensor and actuator is as

follows. The output sensor signal is conditioned by a controller

(rate or Lyapunov) and fed back into the system to the beam tip as

Mn+ (NX t) = KDV D (t) (6.44)

In terms of finite difference eq. (5.44) can be approximated as

n+1 x2KV(t) (6 .451 )w (NX+1) " 2wn+l(NX) + w (NX-1) = El (6.45)

with
"n°o1 n1

Mn+I(NX+1) - Mn+I(NX) 0 (6.46)

form the shear condition at node NX. Combining eqs. (6.45) and (6.46)

expended in term of displacements and solving for w (NX+1) and w(NX+2)

yields

wn+ (NX+1) 2wn+i(NX) - wn+l (NX-1) + E K0VD(t) (6.47)

w+x n+1 .wn+ 3-x3

wn(NX+2) 3wn(NX) 2 (NX-1) + EI KDVD(t) (6.48)

In approach #1 the control was implemented through the

displacement and velocity computations for the fictitious nodes NX + I

and NX +2. A more direct method (approach #2) is possible by using

eq. (6.24) at node NX with active control. From eq. (6.2), eq.(6.24)

I.-..-

~•S5* -.. S

.5 5* 5 ~ *.~ ~ ~ %% %5 ~ '55V~%55..~.~.* 55 .-
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becomes

- ,N

aM (NX,t) =E I'v (NX,t) K (6.49)
at ax 2  DVD(t)

Approximated eq. (6.49) in finite difference yields

Mn+l(NX) Mn(NX) + AtEI [vnI (NX+1) - 2vn+l(NX) (6.50)
Ax

2

n+1p n.. + IV;+ - V;] ? I":
+ vn(NX-1)] + AtKD t Dg-

D At

Since,

VD(t) = KsVs(t) (6.51)

eq. (6.50)becomes

n+ n tE n+ vn+1 vn+1M n+(NX) = Mn(NX) + ATE [vn(NX+1) - 2v (NX) + vl(NX+1)]
AX

+ KDKs [V . Vn] (6,52)

For rate control for approach #1 and #2,

Vo  KsVt) (6.53)

The Lyapunov controller for approach #1 was

I.0,V s < 0

V0  KS sgn (V) where sgn (Vs) .OV s = 0 (6.54)
-i.0)vs > 0

The Lyapunov controller for approach #2 was not pursued since it is a

discontinuous function. Because of this limitation, approach #1 was

1 used for comparison between the performance of the rate and Lyapunov

control laws.

.. :-.. . . . . ...-. ,.p*4 4
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The computational sequence was as previously except that

approach #1, step C now uses eqs. (6.47) and (6.48) and either eqs.

(6.53) or (6.54) for control. For approach #2 step d, for I = NX eq.

(6.52) is used and eq. (6.53) for control.

Stability Analysis

To compute the desired response of the finite difference model of

the active structure, a time step must be selected which insures
55

numerical stability. To obtain a proper time step, a Von Neumann

stability analysis was used for the open loop control which in turn

served as an upper limit to empirically find the proper time step for
.the closed loop control model.

The two coupled finite difference eqs. (6.26) and (6.27) can be

written as
%

"n+1 vn At 2Mn n '6.55v'" -(M' - 2M + M );" ,

1 1 2 +1 Mi-1MAX

M+1 Mn AtEI (vn+- 2vn+1 + vn+l (6.56)
-+1 i 2 1 1 vi1Ax

where the subscript (i) represents the spatial node and the

superscript (n) represents the time increment. The fourier component

at each node is defined as

v= v eJO (6.57)

M? Mne j oi

'  vn+l= n+1 je(i±l)
,v :::..e:
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n l = Mn  eje(i±l)

Using the relations given in eq. (6.57) , eqs. (6.55) and (6.56)

become

vn+l v Mn [e 3e 
- 2 + eie] (6.58)

MAX

Mn+l =Mn . t El vn+l[ejO - 2 + e~j ] (6.59)
2~

further by defining

p = 4 sin 2 e12
Equations (6.58) and (6.59) can be further simplified and written

in matrix form as

vn+l1 AtP b ..

MAX2  l

(6.60)

M n+1 - 1- r at EI pL
AX2M Ax

The eigenvalues of the matrix given in eq. (6.60) can be obtained

by solving the following determinant i"." ."

Atp p

MAxL % '

det 220 (6.61)

AX (1- AX

4

-7 ..- .
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The resulting quadratic equation becomes

A 2  A(2 -A*) + 1 =0 (6.62)

where

AA~

Ax2 )  (6.63) -

The roots of equation (6.62) are

A (2 A*) + /2 (6.64)
2 2 /(2-A)-4

In order for the numerical computations to be stable the errors . ",

generated must not grow. It can be shown that this condition is

satisfied when if

4.4

, = 1 when (2-A*)2 = 4 (6.65)

A < 1 when (2-A*)2 < 4 (6.66)

x > I when (2-A*)2 > 4 (6.67)

Using eqs. (6.63) and (6.65) or (6.66) the time increment can be

directly computed given the spatial mesh size from

O2
At < 2wi. (6.68)

where

Wi  is the highest natural frequency of interest,

Oi is the coefficient for the highest eigenvalue which is

dependent on the boundary condition,

B .-,.

..4 ".
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P=I for the maximum value.

Closed loop stability was evaluated empirically and was an order

of magnitude smaller than the open loop time step.

6.4 Discussion of Results

Optimal Control

A seven node model of the beam shown in figure 6.2 was used for

evaluation of the different models and control laws.

To check on the accuracy of the active structure model for the

first mode response the beam was given the first mode profile initial

condition velocity with a maximum tip velocity of 1.0 m/sec and allowed

to oscillate with no control. Figure 6.4 is a plot of the tip

displacement versus time for this test. The first natural frequency of

the model was approximately 5.2 Hz which is the theoretical natural

frequency for the structure.

Figure 6.5 is the tip displacement response given the same

initial condition of the beam with internal viscous value (c) of .002.

Figures 6.6a and 6.6b are the feedback actuator signal and the tip

displacement respectively using approach #1 for a feedback gain of.'.,

.036. Figure 6.7 is the tip displacement using approach #2 for the

same feedback gain and initial condition. Figures 6.6b and 6.7 are in

close agreement. _

Figures 6.8a and 6.8b are the same results employing the Lyapunov

controller. The controller required a scaling value of the sensor

maximum output for the given initial velocity condition. The Lyapunov

controller was disengaged when the sensor output was less than node

separation distance times the maximum initial tip velocity. Comparison

VI "-'N
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of figures 6.6b and 6.8b demonstrates the enhancedcontrol performance

of the Lyapunov controller using piezoceramic sensors and actuators.

Sensor Size Evaluation

Either type of feedback control is directly proportional to the

input sensor signal. As the sensor size is decreased, the sensor output

is reduced since the difference between the angular rate at the two end

nodes decrease as the nodes approach each other. This can be

demonstrated using approach #2 to evaluate various sensor sizes.

Figure 6.9 is the tip displacement of the rate feedback control

using a .2 gain level with a sensor covering the entire upper surface.

Using the same feedback gain level, the sensor was decrease 72% in size

which resulted in a decrease in control performance as shown in figure

6.10. Figure 6.11 demonstrates that control can performance can be b

reclaimed by increasing the feedback gain by a factor of 18.5.

As mentioned in Chapter II, the sensor signal will degrade for

frequencies at which there exist standing nodal line within its

subdomain. As the sensor size is decreased, the bandwidth of the

measured input to the control system is increased but at a cost of a

decrease in the signal to noise of the input current signal. This is

usually not a problem, though, since with the proper signal

conditioning electronics the sensitivity of the piezoceramic dynamic

strain gages is very high 42.

Actuator Size Evaluation

A similar difficulty arises in the actuator. As noted before, the

piezoceramic actuator is modelled as a system with dynamic opposing

I-.
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couples at its boundaries. Should a transducer attempt to

control a mode such that it results in at least one node line existing

within its subdomain, a degradation of performance would result

because of the phase difference due to the spatial distance between

the two dynamic couples. To eliminate this problem requires proper

conditioning of the control voltage to remove the signal contributions

above the control bandwidth of the system.

Incorporation of the feedback filter electronic differential

equation discussed in Chapter II into the finite difference scheme was

attempted. Stability difficulties were encountered which were

primarily due to the second order differentiation of the control signal.

Finite difference evaluations were conducted on a model that contained

an actuator which occupied a subdomain of the beam. Stability

difficulties were again encountered. The primary suspected problem was

the inability to adequately model the point nodal moments in the

domain of the beam._-. -
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CHAPTER VII

ACTIVE CONTROL EXPERIMENTS'-

Throughout out this research effort, a variety of active control,~~J 0''-

or "electronic damping" experiments were undertaken. The experiments

consisted primarily of investigating the behavior and performance of

the individual unimorph transducers or analysis of the behavior of an

active structural system. The experiments were inherently flexible

due to the adjustability of the feedback control electronics, to

explore both rate and modal feedback system stability and performance

issues.

7.1. Experimental Configuration

A typical test configuration is shown in figure 7.1 A test

structure was chosen and unimorph transducers bonded to select

locations. In all cases a cantilever beam was the test structure.

Depending on the desired test, transducers served as either sensors or

actuators. The output of a sensor was conditioned by the feedback "-",

electronics which in turn supplied a high voltage control signal to an

actuator. For the tests conducted in this research one sensor

controlled an individual actuator. It is possible to control more

than one actuator with a single sensor but unfortunately the prototype

electronics were electrically unstable in this type of configuration.

'.. .
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The feedback electronics were specifically designed to be used

with piezoceramic transducers. Each unit basically consisted of a

preamplifier, filter and high power output section. The preamplifier

converted the current output of the sensor to a voltage signal which

was conditioned by a bandpass filter whose center frequency and Q were

adjustable. The conditioned signal's phase could also be adjusted.

Finally the low voltage signal was amplified and applied to an

actuator. Details of the different experimental configurations and

the feedback control electronics is provided for in appendix D.

7.2. Modal Control Experiments ,.6-

'1. 

The experimental setup provided an ideal platform to examine some

of the problems associated with the application of modern control

theory to flexible structures. A major difficulty when this is

attempted is that flexible structures are distributed parameter

systems. According to Balas 38 the fundamental problem of feedback ,.'.

control of flexible systems is meeting the requirement of precise

control of a large dimensional system with a much smaller

dimensional controller. The approach used by most investigators

39reduces to the problem of modal control 9 . Modal control as defined

by Simon 40 as a method of control which changes the eigenvalues and
eigenvectors of the system matrix to achieve desired control

objectives.

When only a limited number of modes of the infinite number of

modes of the actual structure are controlled observation spillover

-
fo
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usually occurs. Observer spillover 40,41 results when a finite

dimensional controller attempts to control an infinite dimension 'I.

system such as an active structure. At some stage the sensors of the

system will sense the modes of the system that are not accounted in

the analysis (residual). This will lead to system instabilities

observed when the narrow bandpass filters are bypassed. Control

spillover occurs when in the process of controlling the desired modes

the uncontrolled modes are excited.

38 9According to Balas control spillover only causes a degradation

of system control performance while the 'observer spillover can make

the system go unstable. Meirovitch5 7 has shown that even a small

amount of structural damping in the uncontrolled modes has the

potential to eliminate the instability caused by observer spillover.

The use of the active control feedback with arrow bandpass

filters reduces the effect of the residual modes on the control

system. Since piezoceramic unimorph sensors are sensitive to very

% small dynamic strains4 2 they tend to be overly affected by modes

outside of the control bandwidth and thus required the bandpass . _

filters.

Examples of theoretically and experimental results in modal space

control are presented by Meirovitch 3 9 , Hallauer 43944 just to name a

few. In these works, modal space control has been accomplished by I".

using fewer sensors and actuators than control modes and employing

narrow band filters similar to the ones used in these experiments.

To initiate rate control the bandpass filter could be bypassed.

When this was done experimentally, as expected, the control feedback

0S,.. '
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IN

system went unstable. Therefore, all the experiments used the

bandpass filters. Since the filters only had a Q of 20 instabilities

would occur if the current to voltage gain was increased passed 107 •

To measure and reduce the dynamic response data a 16 channel "

Computer Aided Test System (Genrad Model 2515) was used. This system ;

had spectral, frequency response and modal analysis capabilities. -. .

,.-..",.

7.3. Test Procedures

The primary form of testing used to evaluate the modal control

performance was impact response transfer function analysis. The test

procedure followed consisted primarily of measuring the structure's

response from a stationary accelerometer while impacting the structure

with a force gage hammer at selected locations.

From this data changes in the system's eigenvalues and

eigenvectors could be extracted using the various methods provided for "'

51by the SDRC Modal Plus software 5
. Prior to evaluating the system's

response due to impact excitation, the center frequency of the active

control electronic had to be tuned. Setting the center frequency at
..- .,

measured frequencies of the structure did not provide maximum modal

control and an iterative procedure was required to optimize the tuning

of the filters. When the gain was changed the filters required

retuning to maintain maximum performance.

V.\-*
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7.4. Experimental Results

Figure 7.2 is typical of the data obtained during the

experimental investigation. Shown in the figure is multimode control

of the first and second bending modes of a cantilever beam at two

different gain levels using two collocated pairs of piezoceramic

sensor and actuators. The low gain results are at the lowest gain

settings of the feedback electronics. Both high Q resonant peaks are

reduced with the relative change greater in the higher mode. As the

gain is increased to just below the point at ahich the system goes

unstable the peaks are further reduced. At this level the first mode . ".

is also beginning to split. Appendix 0 provides the actual numerical

data for these particular results. '.'-

The results from initial tests conducted on a steel beam (Beam #1

appendix D) were used primarily in a preliminary study of identifying

the changes in the damping matrix of a discrete model of the test

cantilever beam. These results are detailed in reference 77 and the

change of selected damping matrix elements were determined to be -

proportional to the gain for both single and multimode control.

The next series of tests examined collocated and non collocated

control of a aluminum beam (Beam #2 appendix D) and these results were

discussed in chapter IV. The last series of tests were conducted on -

the smallest test structure (Beam #3, appendix D) to identify the

dynamic coupling coefficients of the unimorph transducers. The

results of these efforts is presented in chapter I1.

•.- *, . ,
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CHAPTER VIII. !V

CONCLUSIONS AND RECOMMENDATIONS %" 'NI,

The potential of using piezoceramic transducers for active

control of structures has been demonstrated in the past by a variety V -j

of experiments. Based on the results of these efforts the objective

of this research has been to understand how the use of piezoceramic

sensors and actuators can actively control a flexible structure by

developing suitable models and conducting experimental investigations. ;

A finite element model of the active structure was developed from

the basic piezoceramic constitutive equations for a beam element with

a piezoceramic unimorph sensor and actuator bonded to it. From this

model the current output of the piezoceramic sensor was determined to
'I

be proportional to the integral of the strain rate over the element

length. The effect of the actuator was approximated by a pair of

opposing couples applied at the element modal points which were

proportional to the applied actuator voltage. Furthermore, it was also

established that no collocated sensing and actuating transducers

resulted in a non self adjoint system. %

Using a frequency formulation of the coupled differential

equations of the active structure, experimental data and least squares

type of identification routines, the identification of the dynamic

coupling coefficients for a cantilever beam subjected to multimode

~*i b %"%. % % '.~ >. % % - % .a'
4 . , . ,p*J*..*.p-,. *. - .. . . . . . . ',,.. '+ .. . . .
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control was accomplished. Improvement in the values of the identified

coefficients is possible based on the accuracy of the baseline and

active control feedback electronics models.

A study was undertaken to examine the changes in the active

structure's modes when controlled with non collocated transducers.

Experimental results verified the non self adjointness of the system

due to non collocated control and a procedure was developed to

identify the biorthogonal eigenvectors from experimental residue data.

Preliminary verification of the modal post processing routine was

accomplished using experimental data.

A model of a collocated piezoceramic sensor and actuator

occupying a subdomain of a cantilever was developed and by a

minimization of a selected quadratic functional an optimal control law

was derived. This control law was evaluated for an active structure

consisting of a sensor and actuator occupying the whole domain of the

beam using a finite difference approach. The results of the analysis

indicated that a step Lyapunov optimal control law surpassed a rate

control law in reducing the response of the beam in the shortest time.

Also, a study was undertaken to evaluate the control performance of

the system when the sensors occupy a subdomain of the structure.

Results of this study indicated that through the sensor output

decreases with sensor size, control can be regained with an increase I °

in feedback gain.

Control optimization of an active structure using a limited

output state feedback control was investigated using piezoceramic

.R ~ J A.A .r~&A ~ 1kL~!&~ -~-' - -Lk.A~ '*%~.* %~**~ '- ~%~ - --. .:,Q
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sensors and actuators. A discrete model of a cantilever structure

with multimode control was formulated in state space and the output

feedback control gain matrix optimized. The results indicated that at

the optimum gain distribution the negative real part of the

eigenvalues is increased.

The following recommendations are presented for additional

research into the area of the active control of structures:

a) An extension of the finita element active beam element to

structures of higher order such as plates and shallow shells should be

undertaken. This will permit greater flexibility in modelling

structures such as membrane optics or large dish antenna type

structures.

b) Enhancement of the dynamic coupling results should be explored

by using an enhanced structure and electronic feedback models and

identification procedures.

c) Additional experimental work should be performed on non

collocated control from both a system stability point of view as well

as identification of biorthogonal modal description.of the controlled

response of simple structures.

' d) The use of a higher order control compensator incorporating

narrow band filtering characteristics should be evaluated for optimum

pole placement and gain distribution for multimode control of

structure using a limited state feedback approach.

,.
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APPENDIX A

Piezoelectric Constitutive Equations

Derivation of the piezoceramic constitutive equations has been '.4

done by many investigatorsU '62 '64 & 7 but is repeated here for

completeness. The approach commonly used and followed here is:

a) Derivation of Poynting equation form Maxwell's

electromagnetic theory which is an electromagnetic statement of the

49
principle of the conservation of energy 4

b) Using a modified form of Poynting equation to develop the

first law of thermodynamics for a piezoelectric medium

c) Combining this law with crystallography of piezoceramic

materials to construct a set of constitutive equations for

piezoceramic transducers8'62

Derivation of Poynting Equation.

Maxwell's equations in MKS Units are:

v x H = D + J (Ampere's Circuital Law) (A-i)

V x = -B (Faraday's Law) (A-2)--'_

VB = 0 (Gauss's Law for Magnetic Field) (A-3)

V6 = pe (Gauss's Law for Elect. Field) (A-4)

with

0o + (A-5)

.4i~~
\-.:
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HiiB-M (A-6)

where UNITS

Pe = charge density [C/M]E = electric field intensity* [N/C] [VIM]

E e....,

H = magnetic field intensity* [A/M]

J = current density [A/M 2, [C/S M2 "

D = electric flux density* [C/M2]

B magnetic flux density* [N S/C M]

P = polarized vector [C/M 2]

M = magnetized vector [A/M]

Co = permittivity of a vacuum

magnetic constant

and * signifies a vector field. The polarized vector is a measure of

the electric dipole per unit volume and the magnetized vector is a

measure of the magnetic dipole per unit volume. ,.,

Using the vector identity .4,

V (A x B) = V x A- V x B (A-7)

and equations (A-i) and (A-2), the differential form of Poynting's

equation is derived as follows

V x (xH) = * (vxE) - E (VxH) (A-B)

v • (ExH) -H x B-E * (JxD) (A-9)

,% V
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therefore

-V• (Ex H)= .i+ ([.6 +R. (A-10)

The integral form of equation (A-10) is obtained by integration over a

volume v bounded by the closed surface s. :.:,j

- f[ . ,(x dV f E - JdV +f (E *D .+ )dV (A-li)
V V V.-.

Using the divergence theorem

,rv. dV . ni da (A-12) . .
V • .. -p

for the left side of equation (A-11) yields , -

(E x A) fida E J dV + (E D+H B)dV (A-13)s v v-?

Letting B

= xH (A-14)

and

Ue =(E .D + H. B)

equation (A-13) is rewritten as

a U ndV • hdS- E • J dV (A-15)
", f.. -en

" ~~~i V ,4..-r_

L b....¢
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Equation (A-15) is the integral form of Poynting's theorem and with

units [N M/S] = [JIS] = [WATTS]. This theorem is a power theorem

representing the electromagnetic statement of the principle of the

conservation of energy. Each part of equation (A-15) is defined as: ._ .

Rate of change Net inward power Power imparted to 4.4.

of energy flow through a charges in the

stored in closed surface volume enclosed by the

the volume surface (Joule heat)

This theorem is also expressed in a different format using vector

and scalar potentials A [Weber/Meter] and y [Volt]. The vector field. .

A and a scalar field are defined from the knowledge

of J and then the field vectors D,E.B and H are computed from A and a.

The steps necessary to obtain Maxwell's and Poynting's equations in

terms of electromagnetic potentials is presented in reference 49.

Expressed in terms of these potentials and in tensor

notation
I.*?

( EiD)i + H i ii)dv  -fni [Y(Di Ji) -eijk A Hk]dS
v1

-J aV (A- 16)
v

with the Poynting vector defined as

h = (6i + Ji)  eijkAjHk (A-i?)
,.'<

4-.,:_

4..*.-
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First Law of Piezoelectricity

Since the net change in charge within the body of an insulator is

zero (charge resides on the outside of the body),

Pe = o "

Furthermore, because there is no current flow in an insulator,

' ~J. = 0 :_,
1

Finally since the materials considered in this thesis are polarized

and nonmagnetized dielectrics
M." .0

From the above conditions Maxwell's equations for the piezoelectric

material are

e ijk Hk,j = 6 i  (A-18)

eijk Ekj -B. (A-19)

B = 0 (A-20)

Dii = 0 (A-21)

with

i'a.-

Di = oEi + Pi (A-22) . 'p

Hi = Bi  (A-23)

10 -.

.. ::..
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Likewise from Poynting's theorem the electromagnetic energy

flow out of the surface enclosing the volume of interest is

h = ybi " eijk Aj Hk -Ybi (A-24)

Using the quasistatic electric approximation Equation (A-16)

reduces to 64

-n ih idS f E= + H 1 6)dV (A-25)
V ,

Using the principle of conservation of energy and equation (A-25)

For a piezoelectric body bounded by a surface S with a unit

outward normal n, the rate of increase of energy (kinetic and

internal) is equal to the work done by the surface tractions and

the flux of electric energy outward across S assuming no body

forces.

a fv(1/2 ',,j +U)dV (t -njyb) (A-26)

where

p = density of the material

u = internal strain energy

t = applied tractions I'"

y = scalar potential

D = rate of charge developed per unit area

'N

,. -' 1
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Using the following relations

T. . i Equilibrium
13,3 3

D. = 0 EquationA-21 for the dielectric body

EK =-~ Definition

Si L(Ui j + u. .) Kinematics

where T. is the stress tensor and S. is the strain tensor.

From the above relations and equation (A-26)8

OT. +. +E. (A-27)

Equation (A-28) represents the first law of thermodynamics for a

S. piezoelectric medium, which states that for an adiabatic process, the

change in the internal energy of the piezoelectric material is equal

to the rate of mechanical and electrical work done per unit volume.

0 Piezoceramic Consititutive Equations

8IN Starting with equation (A-28) an electric enthalpy can be A4

defined as

H U E EDi [N m] (A-28)
11'.
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differentiating equation (A-28) with respect to time and combining it

with equation (A-27) yields

H=T ij t ij " D i 9i (A-29)

which implies that H is a function of the strain and the electric

field. Since

aR =B a. + -1
(A-30)asi i j BE i .--;

subtracting equations (A-30) from (A-29) results in

- Di +- 0 (A-31)S as. 1 3E. .,

Ti ~ ij a i  .-.

S and E are arbitrary therefore (A-32)

T DR (A.32ij aS.. ' i 8E.

for equation (A-32) to be satisfied.

Linear piezoelectric theory , results in specifying a homogeneous

quadratic form for H;

Ei E ". EE(A33

A = Cijk SijS K  - eijKE ijk - Ei (A-33)

IN
where . *

A.'

C elastic coefficients for a constant electric field. "%
ijkl

0 .

-A .. J .. J;-i a "-2i ~ . '. A . '. .~i
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d j ieelectric coefficients

Eij d ieelectric coefficients

Frmequation (A-32) the stress and the electric displacement are

specified as

T. C. S -e..E (A-34)
ij Cijkl kl kij k as~~-

D e aR + _ A-35)i iekkl l Ek Ek 8E

Substituting equations (A-34) and (A-28) into (A-33) yields in

U C s +LF-.E.E.(A-36)

whee tereis o pezolecricintracionterm in the positive

Equaion (A33)and A-3) rpreentthe constitutive equations

for n ubouded iezeletricmedum.Theother forms noted in the

literature (6) are:

j ij s T + d E(A-37)
ii ijkl kl dkij k

0 =dikTk + CT E(A-38)

and

~ ..D (-39)
ii Sijkl kl + kij k

%
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E giklTkl + OikDk (A-40)

and

T 0 h D (A-41)
i ijkl kl kij k

E -hiklSkl+ D (A-42)

Note, the superscripts designate the following condition:

T = constant stress

E = constant electric field -A

S = constant strain

D = constant electric displacement 28

The matrix relationship between the coefficients in equations

(A-34) to (A-42) are expressed in the following matrix from as

[OT] [ET]- 1,

TV
[g] CO ][d]

[SD] : [sE l 
- trans ([d])[0T][e]

[e] [d][cE

[h] [ s ]Ee]

Co01 : CEI + trans (Ee])[ s ] [e.]

,,s] C OT] + [h][SO]trans ([h])

E s] [E I [d][CE] trans ([d])

,, 1,'

+. .~.' ,
",4., W  

,

.1-

'V.-.

- .. -
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iti

To use equations (A-33) to (A-42) for analysis of the

electromechanical coupling of unimorph piezoceramic sensors and

actuators to elastic bodies requires knowledge of the piezoceramic

mechanical, dielectric and piezoelectric coefficients. The

piezoceramic used is a ferroelectric material.

To obtain the necessary coefficients, for the particular

8ferroelectric used requires a review of crystallography and its

application to this class of materials.

Ferroelectric ceramics consist primarily of a single crystal type

structure of polycrystalline material. When this material is poled by

the application of an intense external electric field at elevated

temperatures it is made piezoelectric and rendered a single crystal

symmetry on a macroscopic scale. .i .1
Crystals are grouped into seven systems depending on their

symmetry. These systems are further divided into classes according to

their symmetry to a point. In all, there are 32 classes of which are

8considered to be piezoelectric .

The lead zirconate titanate (PZT) type of ferrelectric is a '

hexagonal crystal system and identified using the international

crystallographic system as 6mm which is distinguished by an axis of

sixfold symmetry.

To relate the constitutive parameters to the different _____

4. 8crystalline systems an elasto-electric matrix description is used8 .

This method of description relates the coupling between the elastic
OP

1 -F

4.,, ", ',", ,# .,,.. k. ... ,..
"

, '' . .L;L-
' ' '
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and dielectric properties (equation A-33 and A-34) by an arrangement

of the dielectric and elastic coefficients. The elasto-electric

matrix consists of a nine by nine matrix where in each column is

related to the independent variable such as stress or electric field

component and each row to a dependent variable such as strain or

electric displacement.

For example, the triclinic crystalline system or the one

possessing neither symmetry axes or symmetric pianes has 45 different

coefficients as shown below:

___ S11  S22 S3 3  S23 S31 S12  EI  E2 E3
'U

ST 11  11 012 013 014 015 016 ell e21  e31

T22 C21 C22  C23  C24  C25  C26  e12  e22  e32

T33  031 032 033 034 035 036 e13  e23  e33

T23 C41 C42 C43 C44 C45 C46 e14  e24  e34

31 51 052 053 054 055 56 e15 e25 35

T 0 C 0 C C e e e12 61 62 63 64 65 066 16 26 36

e11  e12  e13  e14  e15  e16  F-11 -12 13
0 D e3 e3 e3 e3 e3 e302 e21  e22  e23  e24  e25  e26  21 22 23

03 e 31  e32  e33  e34  e35  36 31 32 E3 3

where the following use of compressed notation is applicable:

'U'.
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ij or kl p or q

411 1 "A .'

22 2

33 3
23 or 32 4

31 or 13 5

Note:

S S = j, p,q = 1,2,3 *..-
'S 1 pq, i

2S =S = j, p,q = 4,5,6
13 pq, i

For a 6mm hexagonal crystal the elasto-electric matrix becomes

S11  $22 $33 $23 S31 S12 E1  E2  E3

T C C12  C13  0 0 0 0 0 e

22 C2 1  C11 0 0 e3 1

T 33 C3 1  C3 1  C33  0 0 e 33

T 23 0 0 0 C44  0 0 0 e15  0 . e.

T 31 0 0 0 0 C44  0 e15  0 0 .

T12 0 0 0 0 0 C66  0 0 0

D 0 0 0 0 e15  0 11 0 0

D2 0 0 0 e15  0 0 0 £ii0

D3 e31 e31  e 0 0 0 0 0 £33

with ten different coefficients.

Note, that C66 = (C11 - C12)/2. .66 (C11 C12
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The piezoelectricity of the 6mm crystalline material is now .

classed by three independent piezoelectric constants, e31, e33 and el5

or as noted previously d3 1, d33 and d15. The data available on the

piezoceramic materials is usually given in the later form.

Equations (A-33) and (A-34) are expanded for example (ref. 74 ) to

obtain the following constitutive equations for an unbounded 6mm-

piezoceramic medium.

1= C11U 1  + C12u2,2 + C13u3,3 + e31E3

T22  C2 1u1 ,1 + CllU2 ,2 + C13u3 ,3 +313

33+ C13u2 ,2 + C33u3 ,3 + e33 E3
..T.

T23  C44 (u3 ,2 + u2 ,3 ) + e15E2

31 4413,1 1,3 + 1  e

12 66(u1,2+ u2 ,1) __

1  e15 u3 ,1 +e 15u1 ,3 - 1

2 = e15(u3 ,2 + u2,3) - 11E2

D3 = e31u, 1 +e 31u2 ,2 + e23u3,3 -c 33E3

.4

9,,,,

""',2'
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List of Piezoelectric Coefficients and Their Units

Cijkl,Cpq Elastic Stiffness Constant N/M2

dijk, dip Piezoelectric Constant M/V or C/N

eijk i p  Piezoelectric Constant C/M2

E Electric Field Component V/M
i%

9. 2
ijk,gip Piezoelectric Constant V-M/N or M2/C /.

hijk,hip Elect. Enthalpy Density J/M3

O0 Electric Disp. Component C/M2

C Capacitance Farad . ..

S ijkl,Spq Elastic Compliance Constant M2/N

'3 Impermittivity Constant M/Farad

0 Perm. of free space (8.85e-12) Farad/M M,

i Perm. component Farad/M5

i'.

..-.

,.' .2,-'2'
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APPENDIX B

FINITE ELEMENT ACTIVE BEAM MODEL

This appendix contains the following:

a) The derivation of the element matrices of a beam finite

element model with a piezoceramic driver. -,

b) The derivation of the element matrices of a beam element

with a piezoceramic sensor and actuator.

c) Investigation of the effects of Guyan condensation on the

active structural damping matrix.i7

BEAM ELEMENT WITH AN ACTUATOR

448

The finite element model 48 of a beam element shown in figure B-1

with a perfectly bonded unimorph piezoceramic driver and subjected

only to bending is derived follows: Fixing node i-1.

w 0, e_ 1 = 0

Equilibrium for the beam is

d = 1 -Mi + Vi(L-x) + KDVD] (B-i) "%
dx 2  

1

where V0 is the DC voltage applied to the driver.

D.'

4.,?
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Integrating once gives

dw 1 2
cx~~~ ElE~+1 L+-+ KDV~x 1]+ (8-2)

x 0, dw.. 0 = 0

xx

x Lw dx -

Solving for the rotation at node i gives

i2
.f.L

E -MiL + 1 KDVDQ](B-3)

1 i 2 KDVDL

Integrating equation (B-2) gives

r2_ 3\ KDV x
w L - -x + V* ( Dx 2 + (B-4)E 2 i ( + 2t- +  2 + C2

x0, w 0 C2 0 -,

x L, w wI

Solving for the displacement at node i gives

wi= T[ MiL 2 VIL 3 KvDL ] :"1 :
+ + (B-5)

Combining equations (B-3) and (8-5) in matrix form and taking the

inverse of the flexibility matrix gives

4d
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( [KBB] (B-6)

(M i  K 0V D)/L e i L ,',:.re

where N%

"K -= I o-12 6'

L [6 4J

Fixing node i results in the following free body diagram shown in .

figure B-2. Equilibrium for the beam is now with W 0 and 0.

d 1 [V x +M +KV (-7)
dx2  Ei-l D DB--)

where V0 is again the DC voltage applied to the driver. Integrating

once gives

w 1 2'

dx L x 2 + KVDX + M {B-8+,K ..:,D.L

x dw - KOVDx 'dx = .c = 1  Vi-l + il DD ;'

dw '.. "'

-" =0dx 1

Therefore solving for the rotation at node i-1 gives

I 'L + KDVDL (B-9)el =i-IL 2+

4..:.
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Integrating equation (B-8) gives

x2 +V x3 + D~ 2  i 2x
l x  + 2 M iLx- KDVDLX + C2

Wl T 1 -2 + 6 2 2 -DD2

(B-10)",

L3 Mi- 2  KDD3 ";' '

x L, w 0 C i - + .L2  + DD (

X 0 , w =w ,-

Solving for the displacement at node i-l gives

+11 Mi L2 KDVDL2] (B-il)

Combining equations (B-3) and (B-5) in matrix form and taking the

inverse of the flexibility matrix gives

(M i'I + K D VD)/L A i'l '

12 -6

-6 4

To obtain K13 and K21 equilibrium a ode i-l can be written as

V ,° -o ,1 21

; ., ., .- . , * ' .# . , - "o . " .. . . . " ,, w . -_T T w -, ,
, ,

, , " w ' . v, .r , ,, ' _ _ _ _ _ _ _ _ _ _ _ _ _ ___e, . ; " € .: , r ¢ ,. z . , , ,, . , w .,,__ _ _
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-ViL + Mi + Mi + KDV D  KDV D  0 ;'- ~%

or in matrix form

= ([-13 01V

(M i l  + K D VD)/L 1 - (M i  K KDVD)/L

Substituting equation (B-6) into (B-13) yields

[K (B-14) ..-.

where

El -12 -6LKA. 3

Equilibrium at node i is

* V +V. =0

Vi1 + V 0

M - V + M + KDV + V = 0

C -.

or in matrix form

C.

C.

" '' " ""°-" " " " " ' '.%'''' " °@ @" '-" '.','4,- ,4 # ''. '- -'-.-• " . -"-" " - -"." W' • " . -"-" " - ."." "-"•.
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(M- KDVD)/L -1 -1 (M + K V )/L

Substituting equation (B-12) into (B-15) gives -

%. W

i [K BA (B-16)
(M K KVD)/L - L ,.'-

where

[I -12 61[BA] I 6 2 K.-

Combining equations (B-6), B-12), (B-14) and (B-16) gives the final

result

V w

(M1 1 +KDVEl 2- 6 4 Sym -

Vi L 3  -12 6 12 w i  _6 2 6 4

(Mi " KDVD)/L 0iL -

(B-17)

T.. ..
.U.-..

'. "-%
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or

Vi- 12 wi-
i-12

(M + K-VDYL 6L 4L2  Sym

i-1 D=EI -,

V. L3  -12 6L 12 w
1

(Mi - KDVD )/L -6L 2L2  6L 4L2  i .-
_. ..,

(B-18)

BEAM ELEMENT WITH PIEZOCERAMIC AN ACTUATOR AND SENSOR

Following the same procedure as before with the following

additional assumptions

a) The displacement and rotations are a function of both space

and time.

b) The motion is considered such that the inertial forces of the

beam are neglected.

c) The complete upper surface of the beam is covered by a sensor

and the complete bottom surface by a driver.

d) The polarity vector of the driver is positioned such that

given a positive voltage, the applied moment will be of the same sign

as in section 2.2. The free body diagrams in figure BI and B2 are

valid.
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as in section 2.2. The free body diagrams in figure BI and B2 are

val id.
V A

From equation (2.22) in chapter II, the equation for the voltage

form the sensor is

x.iVS(t) = Ks  f aw(xt) dx (B-19)

where

Wd hd cE RF

From chapter 11, rate feedback is defined as 
.

VD  VS  (B-20)

Combining equation (B-20) with the integral (B-19) evaluated and

substituting for V0 in equation (B-18) yields

Vi-l 12 wi_ 1 1

i- KDKs[ - e)']l -6L 4L Sym 0i-I
EI

-V L3  -12 6L 12 wi "

M . - K K [ 2 eM D D - 6i-l]  -6L 2L2  6L 4L

K. iD " ,,1. ",

[K]

(P-21)
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".1

Expanding the right hand side of equation (B-21) gives the final result

_

V. L 3 : 6 1_ 1

i 0 0 0 0

Si -I 0 1 0 -1 i-
_ l K] + K D Ks  0 0

V. L 3  0 0 0 0w

'"0 -1 0 1 "'-LL
(B-22)

GUYAN CONDENSATION OF THE ACTIVE DAMPING MATRIX

Identification of the dynamic coupling of the active was

presented in section chapter III. The five degree of freedom model

consisted of only translational degrees of freedom with the rotational

d.o.f. condensed out using Guyan condensation. Presented in this

section is the results of condensation of the small four element of a J.

beam shown on figure B-3 with two collocated sensor actuator pairs.

The structure considered was assumed not to have any internal

damping. The mass ans stiffness properties of the structure can be

arranged as

[w1 ]7 12K -
I IK KKr

MwW Mwe w0 l F-,,.n += ..wn"

I elKw KO M. HI "I I=

Mew j0 e Ow -e"

(B-23)
,.

,,.4

-'" " "- '. " - . - - '- "- " . - -, " ' " - .-" - .'- - ".-.." -".. . ." . . .."---'- -- -.. ." - ". - 5'""- 2'"" - , "
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Given equation (B-23) a transformation matrix66'67 can be developed -

such that

4$2n x 1~
w. %

0

2n x n n x I

= [ (8-24)
BI LT] wn

4n n

where -

[T] - [K o][Kw] (B-25)00 Ow

Using equation (B-25), equation (B-23) can be transformed to

I"] R] (B-26)

/'inn

where 
,--.

[M] = [I] [T] T  M [I] and [R= I[ T  [K3 [I] 1i'

[ T ] I T ] ] -, .- -

- -•""-%,
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The assembled and rearranged structural damping matrix for the

structure in figure (8-3) using equation (B-22) with L 1 is I
[0] [0);-

KDKs 1 -1 0 0 3

-1 1 0 0
[]0 0 1 -1 "

0 0 -1 1 w5 (-27),- . ~( B-27 ) .,.

* 1eaj 3
* 3 J. .-

04

05

with the stiffness matrix as

24 -12 0 0 0 -6 0 0 w
-12 24-12 0 6 0-6 0 w3

0 -12 24 -12 0 6 0 -6 w

0 0-12 12 0 0 6 6 w5  (

0 6 0 08 2 0 0 02

-6 0 6 0 2 8 2 0 3

o-6 0 6 0 2 8 2 0 40 -6 0 6 0 2 8 2 4,

0 0 -6 6 0 0 2 4 05

%--

.,.. . ... -. -. -, .. " ". .,' ". "w . " ". ,. . " .'- "-' " 'w'- " " "" " -''" Q .- - . - . W .P % W . . R-29P
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With equation (B-28) partitioned as shown in equation (B-23) the

transformation matrix can be computed according to equation (B-25)

-.2165 -.7423 .1856 -.0309

.8660 -.0309 -.7423 .1237 "
[T] = (B-29)

-.2474 .8660 -.2165 -.4639

.1237 -.4330 1.6080 -1.2680

To condense the structural electronic damping matrix to only

displacement d.o.f. requires the following operation.

o' El = [I] [T]T  [cco I (B-30)

-"[T]

The result of this operation is

w, w2  1.310 2

w 3  .2885 2.193 Syi w3  P
WC 4  s -.3278 -3.030 4.191

'44 4

-.1309 1.155 -1.611 .6705 5

A,'

(B-31) _

The condensed form of the electronic damping matrix is fully populated

and symmetric for collocated sensors and drivers... '

:, .4. a

',
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APPENDIX C:

System Identification of Vibrating Structures

System identification is the process of using measured test data L--.

of a structure's response and usually some a priori information of the

system's parameters to develop a mathematical model which simulates

the system's behavior. System identification can be accomplished in

the time or frequency domain employing either physical or modal data. %.-

Common approaches used are: •--

a) The minimization of the error satisfying the system's

equations with the measured response.

b) The minimization of the differences between the measured and

analytical response.

c) Seeking a new set of system parameters that differ the least

from a priori or specified values using the system equations as

constraints.

Given the matrix description of a system as

EM) {xi} + [C] {ki} + [K] (xi) =fi}  (C-I)

where the matrix coefficients have been identified and represents the '.4-

- 4,

vector of the physical degrees of freedom and {fi)is the vector of the 4.

forcing functions, equation(C-1)becomes the baseline analytical model.

•.'
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"C, 'C ,

This model can be used for example to study changes in the physical

system as well as changes in the boundary conditions.

The system can also be characterized by _

[Z(M)] {xi(W)) : ffi(w)} (C-2) -Cr

N. . -S
where the inverse of

[Z(W)]-  [-w'[M] + jw[C] + [K] -1]J [Y(w)] (C-3) -

is the mobility matrix and each element is a transfer function. The

identification of[Y(w)] can be used to study the effects of various

aayi65
forces on the structure or for a component synthesis analysis

The system can also be characterized by

A. [M] ({i} + xi[C] {€i} + [K] [oil = 0} (C-4)

where Ai and Oi are the eigenparameters. In this form the general

validation of an existing analytical model can be obtained. This

particular characterization was used in an algorithm developed to

identify the baseline system matrices without active control. A brief

outline of this procedure is given next for completeness.

The system matrices of a dynamic system, such as the one

described by equation (C-i), satisfy the eigenvalue problem

. MO. + LiCOi  + KOi  0 ( 1 1,2 .... 2n) (C-5) . .

C..

'C"-.,
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where

A. = ith complex eigenvalue

If one uses arbitrary matrices in place of the correct system

matrices in Equation (C-5), it is not satisfied exactly. The norm of

the resulting error matrix is then minimized over all the modes with

respect to the matrix elements subject to symmetry constraints. This

process results in a set of homogeneous simultaneous equations given .'.
%...

by

T TMLI + LIM + CL2 + L2 C + KL3 + L3 K 0 (C-6)

ML2T + L2M + CL4 + L4C + KL5 + L5TK =0 (C-7) .-b- A

T4ML3T + L3M + CL5  + L5C + KL6 + L6 K= 0 (C-8)

where

L = ZF2(FT)2 ZT, L = ZF (FT)2ZT

L = Z(FT)2Z, L = ZFFTZT

L = ZFTZT, L = ZZT

Z = [Re(o i)  ....... Re(o i) Im(Oi) ...... Im( i)]

and L -

AR  AI  ; .

F= , _ ,

I  AR

* %..
* ,*o .

1p .. L ,4

* . A 1
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with

AR diag[Re( i ) ... Re( i ) .

AI = diag[Im(oi) ... Im(o i)]

If some of the matrix coefficients are know a priori, the ,_

remaining unknown coefficients can be determined from these equations. '-.-S

If the identified matrices are such that they satisfy the

eigenvalue problem with respect to the measured modal parameters

exactly, the orthogonality conditions are also satisfied. If the

error in the eigenvalue problem is not zero, orthogonality is

satisfied approximately. However, even in this case, orthogonality is

satisfied exactly with respect to the identified modal parameters,

which in turn are approximately equal to the measured modal

parameters.

The identification procedure used to compute the mass, damping

and stiffness matrices required that some of the mass or stiffness

elements to be known a priori. To provide this information, models fo

the various test cantilevered beams were developed using the

GTSTRUDL67 finite element code.

The finite element model consisted of plane frame XZ type

elements. The mass of the accelerometer located at the tip of the -

test beams was included as a lumped mass at the tip node point of the

model. The mass of the piezoceramic transducers and wires was

considered negligible and therefore not included. Finally, depending ,

N.

.:.....

o 4 9

.';, ,'.-.x" .. ' '... I ' '.L'''';, " ' " . 5 . . .. ,'..2" " '' " ' "' "' ' "', .. ," .
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on te mdela rduce se of ode wer usallyof nterst.Thi

required reduction in the number of degrees of freedom using Guyan

66*
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APPENDIX D:

ACTIVE CONTROL EXPERIMENTS

Experimental Setup and Equipment •.

Structural dynamic control experiments were undertaken to

evaluate the performance of the active control of simple structures. V

Three cantilever beam were selected which had the following

dimensions:

#1) Steel Beam 24x2x.5 inch.

#2) Aluminum Beam 24x2x.25 inch.

#3) Aluminum Beam 9x.651x.172 inch

Beam #3 was used for the identification of the dynamic coupling

coefficients. All three beams were welded to a thick metal plate

which was bolted a support frame. Figure D-1 is a drawing of a

typical beam experimental setup.

Piezoceramin unimorph transducers were used to sense and
dynamically control the cantilevered beams. The transducer locations

for the three beams are shown in figure D-2. The transducers were

supplied by Piezoelectric Corp. and were made out of G1195 material mm

which is a lead zirconate titanate (PZT) type compound. Depending on

the transducer, it consisted of either 3/4 x 3/4 x .010 in. or a 1.5 x

.655 x .010 thin sheet of piezoceramic sandwiched by two nickel

'p.

-. S ?V S . .. T -
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electrodes that cover the entire surfaces. Shielded leads were

soldered to the electrodes at the corners of the transducers. Table

0-1 lists the material and piezoelectric specification for the PZT

material.

For each configuration, the transducers were bonded to the beam a at the

desired locations with a thin layer of epoxy.. A small amount of micro

bubbles were mixed in the epoxy to keep the bottom of the electrodes were

insulated from the beam surface and to maintain an even layer of adhesive.
The epoxy consisted of a two part mix which required fiveto cure at room

temperature.

In general, the response measurements of the beams were made

using accelerometers (BBN model 507 Sn 1346, PCB model 303A SN

7384). The accelerometers were usually fixed at a single location

(tip) and an impact hammer with a force transducer (PCB model 208A03

SN 4417 and PCB 086B80 Sn1284) was moved along the beam to the

different locations to apply impact excitation.
4..

For each collocated transducer pair, one transducer was selected

as the sensor and the other as an actuator. The current output of the

sensor was conditioned by an active feedback control system which

provided high voltage output to the actuator.

Two prototype active feedback control units were provided by Dr.

R.L. Forward from Hughes Research, Malibu CA. These units were

designed for the sole purpose of demonstrating the potential

performance of active control using piezoceramic transducers. The

units basically consist of a preamplifier, filter and high power

I' "
•  

.

'. .-g@

4%.. j
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Table D-1. G-1195 Piezoceramic Coefficients.

Electrodes Nickel
Modulus = 6.3E+i0 N/M 2  .
Capacitance (.75 x .75 x .01 in.) = 2.2E-08 C/V
Capacitance (1.555 x .6086 x .01 in.) = 3.9E-08 C/V
g31 = 1.14E-02 VM/N
d31 = 1.79E-i0 M/V
E33 = 1.65E-08 Farad/M
Curie Temp. = 360" C
Density = 7.6 gr/cc

%- V- d

N

9. . .0

. ';

" . "

~ -. ~ . ~ .~ .. -° P -
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output sections. The preamplifier section is simply a charge

amplifier which converts the output of a piezoceramic thin sheet -'

ceramic strain gage (current) to a voltage. The voltage is then

filtered to a desired frequency, phase and frequency bandwidth (Q)

prior to being amplified in the high power section for driving other '. -. '

piezoceramic strain gages. Figure D-3 is a drawing of the front panel

of an active control unit. A detailed analysis of the active feedback and

their calibration is covered later.

To measure and reduce the dynamic response data a 16 channel

Computer Aided Test System (Genrad Model 2515 was used). This system

provided a multitude of methods to evaluate the quality of the data as

well as computing the change in modal damping upon the application of

active control51  Figure D-4 shows a typical experimental setup with

all of the primary signal conditioning equipment.

Test Procedure

Prior to each test, the gain, center frequency, bandwidth and

phase of the active damping units was adjusted. The Q or bandwidth of

the filter circuit was set at its narrowest setting which was 20.

Using the output of the accelerometer or a sensor, the frequency at a

particular gain setting was fine tuned until a minimum output was

obtained for the given sinusoidal excitation applied by an

piezoceramic actuator. The optimum phase setting was at 180 degrees .'J

for collocated sensors and was not optimized for the non collocated

test.

%. % .

. . . .. . . . . . . . . . . . . . . .
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After the control units were set for a particular test

configuration, impact response tests were undertaken. Both baseband

and zoom frequency response analysis were used depending on the

objective of the particular test.

The impact and response signals obtained for zoom analysis

required filtering which was done by a pair of Krohn-Hite dual channel

filters (models 3343 and 3342R). The filtering was necessary to

maintain an acceptable signal to noise ratio. A wideband random .b

signal was simultaneous applied to both channels and a transfer

function was computed between them to measure any phase shift caused

by the filters. No phase shift was detected in the frequency band of

the experiments.
-- 'I

DATA PROCESSING AND REDUCTION

Using transfer function analysis techniques the modal parameters

for the beams were determined. The impact/response measurements were

averaged together together for each beam location and stored for later

analysis. When a particular test condition was completed, the

resulting transfer functions were processed using SDRC Modal Plus .a-;

software5 1 to obtain complex modal parameters and mode shapes.

Various options available for modal analysis were explored and

compared. Differences between the parameters identified on this A .

single input output type system were slight and it was finally decided

that the complex exponential technique 51 was adequate to obtain the
W
+  %" .4

J
+  P'a

" ".-
Jt

'-p - - Z - T ' <+ ZZ +
"

+ .+.r .v_..+,_._,_a_ ,_-... "" ""' """
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complex pole and residue data. Finally, a circle fit routine was used

to obtain the real and imaginary modal coefficients.

MODEL OF THE FEEDBACK ACTIVE CONTROL ELECTRONICS

Schematic drawings were supplied with the prototype electronics

and are shown in figure D-5. Two tasks were undertaken to model the --

control units. The first task was to perform a detailed system -

analysis using the schematics. Secondly, since the possibility

existed that components were altered from the original design, a

series of calibratioin tests as well as physical examination of the

internal components were performed. The test also served to further
4.-

verify the differential equation model of the active control feedback ;'-

filters.

As mentioned previously, each active control feedback filter

consisted of a zero impedance preamplifier, bandpass filter, phase

shifting circuit and high voltage output amplifier. Each subsection

is identified on the schematic drawing in figure D-5.

The preamplifier subcircuit shown in figure D-6 can be

apporpriately modelled as shown in figure D-7. The input resistance

is selectable from 106 to 1011 ohm with gain knob #1. The corner

frequencies of the various parallel capacitor resistor networks were

not within the 30 to 600 HZ experimental operating range and therefore

their effect was considered negligible.

0 -
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The equation modelling this portion of the control unit is

V6p(W) -RFiw(W) (D-1)

The bandpass filter section is drawn in figure D-8. The filter

center frequency and Q were adjustable. The filter Q was set at its

maximum value of 20 for all experimental tests. Figure D-9 is a

impedance block drawing of figure D-8 to assist in evaluating this ,.

part of the control unit. Using the principle of superposition, the

solution for the voltage at node 3 is

Z(Xl Z(x I  Z2(x
V3(W) = " lV 1  2 V - V (D-2)3 Z 1 Z5(Xl) 7 X. 8

where x1 represents the position of the Q adjustment knob. Solving

- for the voltage at nodes 5, 7 and 8 yields
S(.D-3.)

V5 = -(Z4/Z3(x2))V3  (-3)

V7 = -(Z7/Z6(x2 ))V5  (0-4)

V8  -(Z9/Z10 )V5  (D-5)

where x2 represents the position of the center frequency adjustment

* knob.

Since Z = ZlOin equation (0-5)

V8  -V5  (D- 6)

.4
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Combining equations (D-3), (D-4) and (D-5) with (D-2) yields

W\CW

V(w = O.la V " (D-7)5()b- ,.2 + jwa 6p2

where

V1(W) = V6p
(W)

a: W /Q, b = w

2 (/Z (x2)C)

Q = z8 /Z2 (x1 )

The output from the bandpass filter is conditioned by the phase

shifting network shown in figure D-10. The phase did not need

adjustment a collocated sensor and actuator. The phase was set at

zero and toggle switch which allowed a 180 degree shift was used to

set the proper polarity for active feedback control.

The transfer function of ihe phase shifting network between nodes

5and 10 is

VIO(w) = - [1/(I + j(9.4 x 10- W)J (D-8)

The gain was computed for the transfer function in equation (0-8) for I

a frequency range of 1 to 5000 rad/sec. The results are plotted in

figure D-11 and indicate a rolloff at about 2000 rad/sec.
p ", o

,,V._.

",, ,V..

.%%

-p -. "."'' _ .. . _ .., , . .. , . ... . . . .. ...,; . . -. _ _. ... ,.. . . . . , . , . -- v



228

%IJg

Figure D-10 Phase Adjustment Circuit Section

0' 

Ga in__ _ _ _ _ _

9-

VS &... .81

10 00

Figure ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ S D-1 Gi sFe. hs dutet ici eto



229

After the phase network, the signal is further conditioned by a

high gain voltage amplifier network shown in figure D-12. Analysis of

this portion yielded

0992( w(an + jW)V11 (w) =.0992 V(W) (D-9)
b - w + jwa "

4 56

The parameter an varies between 1.352x1045 to 1.375xi0 5 as the gain

adjustment know #2 is adjusted from 1 to 10. Using the extreme values

of an the gain was computed for a frequency range of I to 5000

rad/sec.

These results were presented in figures 0-13 , and indicate a

gain range of .3 to 3.3 through this section the final part of the

amplifier had a gain of 30.

Combining equations (D-8), (0-9) and (D-10) and ignoring the

poles and zeros out of the range of operation yields

Vl1 () = b-2 ,,a(0-10)

- W + jwa) -. *' -.

where

G is the total gain through the system

VI1(w ) =-R F iIN(M '

The range of the voltage gain from equation (D-8) (D-9) and

(D-10) is approximately .9 to 9.9 when operating between 10 to 2000

rad/sec. To actually determine the gain for a control experiment

L..,,A
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required that each control unit be calibrated after a particular test.

Calibration was accomplished by providing a wideband current input to

the preamplifier using a resistor in series with random voltage

source. The transfer function between the preamplifier output voltage

and the high voltage output provided the data for a least squares
identification routine which identified the gain, Q and center

frequency. This technique was presented in chapter III.

Table D-3 is the peak voltage at the center tuned frequency when

a 1 Vrms random signal is passed through a 1 x 106 ohm resistor to the

preamp input.

EXPERIMENTAL RESULTS

A variety of different tests were done to examine the active

electronic damping performance using the G-1195 PZT type

sensors/drivers on the cantilever beams and Table D-2 lists the major

tests conducted.

Tests 1-23 were exploratory in nature and will not be discussed

further. Test 25-26 were active control experiments applied to beam

#3 and were used for the identification of the dynamic coupling

coefficients.

Prior to each active control test, the baseline (no control)

eigenvalues and eigenvectors were obtained for each configuration.

Figures D-14a & D-14b are a typical sample of the transfer function

data of the first and second modes. Table D-4 lists the complex

eigenvalues for the first ten modes of beam #3 and the experimental

eigenvectors for the first two bending modes. The eigenvectors were
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Table D-2. Active Control Experiments

Test Mode Gain Date Remarks

Beam #1

1 ...... llDec84 No Active Control
2 2 9E6 11Dec64 S42/A#2
3 2 4E7 l1Dec84 S#2/A#2
4 3 1E6 11Dec84 S#1/A#1
5 3 9E6 12Dec84 S#1/A#-
6 2&3 9E611E6 13Dec84 S#1/A#i & S#2/A#2

7 ----- 6MarS5 No Active Control
8 2 4E6 6Mar85 S#2/A#2
9 2 9E6 6Mar85 S#2/A#2
10 2 IE7 7Mar85 S#2/A#2
11 2 4E7 8Mar85 S#2/A#2
12 2 7E7 8MarS5 S#2/A#2

13 --- Jun85 No Active Control .
14 2 4E6 Jun85 S#2/A#2
15 2 9E6 Jun85 S#2/A#2
16 3 4E6 Jun85 S#1/A..
17 3 9E6 Jun85 S#1/A#.
18 2&3 4E6 Jun85 S#2/A#2&S#1/A#1
19 2&3 9E6 Jun85 S#2/A#2&S#1/A#1
20 2&3 4E6 Jun85 S#1/A#2&S#2/A#1
21 2&3 9E6 Jun85 S#1/A#2&S#2/A#1

Beam #2

22 ----- 24Sep85 No Active Control
23 3 7.5E6 060ct85 S#1,A#1

Beam #3%
.. ,

24 --- 16Jun86 No Active Control '
25 1&2 1E6 26Jun86 S#i/A#2&S#2/A#2
26 1&2 8.5/7.5E9 29Jun86 S#1/A#2&S#2/A#2

* . *

NJ.
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Table D-3 Peak Voltage at Center Tuned Frequency of 232 Hz.

Control Unit Gain Volt

A 1E+06 2 .8862
IE*06 20 .8021
1E+07 20 8.095

B IE 06 2 .9500
IE+06 20 .7610 .
1E+07 20 7.910

Notes: Wideband 1.OE-06 amp input DC-I024Hz. Phase shift 0.0
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Table D-4. Complex Eigenvalues and Real Eigenvectors Beam #3.

Experimental

Mode Freq.(Hz.) Damping

1 58.301 .007
2 370.283 .00354
3 1040.00 .00390

4 2056.00 .00234
5 3304.00 .00234

Analytical

6 7035.5 .005
7 10162.78 .005
8 15014.9 .005
9 24576.9 .005
10 50531.79 .005

Experimental Real Eigenvectora

Location (x) Mode 1 Mode 2

0.0 0.0 0.0
2.688 .1227 .6463
4.211 .3205 .9865
5.633 .4205 .8140
6.383 .5512 .3858
9.000 1.0 -1.0 P
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computed for the first two modes using a circle fit routine and

figures D-15a & D-15b are typical examples of the quality of the fit.

Two different levels of active control was applied in the
experiments. Figure D-16 is an overlay of the baseline and the low

and high gain tests. Table D-5 lists the actual gain values for each

control circuit.

Figures D-17 and D-18 are a sample of the real and

imaginary response comparisons for the baseline and active control

tests. Numerical data from these control tests were transferred to -

the cyber for use by the dynamic coupling identification scheme.
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Table D-5 Experimental Gain Values for Bean #3 Modal
Control Teats -,

Test Mode Gain.*

#1 1 1.OE+06

2 1.OE 06

#2 1 8.5E 06

2 7.OE+06

Note: Gain Represents Total Gain From Sensor to Actuator
Including Preamplifier and Voltage Gain. 
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